Evolution of Vector Vortex Beams Formed by a Terahertz Laser Metal Resonator

Keywords: Terahertz laser, Metal waveguide resonator, Spiral phase plate, Vortex beams, Polarization, Radiation propagation

Abstract

Analytical expressions for the nonparaxial mode diffraction of a terahertz laser metal waveguide resonator are obtained. The study assumes interaction between the modes and a spiral phase plate, considering different topological charges (n). Also, using numerical modeling, the physical features of the emerging vortex beams as they propagate in free space are studied. The Rayleigh-Sommerfeld vector theory is employed to investigate the propagation of vortex laser beams in the Fresnel zone, excited by the modes of a metal waveguide quasi-optical resonator upon incidence on a spiral phase plate. In free space, the spiral phase plate for exciting TE11 mode from the profile with the intensity maximum in the center (n = 0) forms an asymmetric ring one with two maxima (n = 1, 2). For the exciting TE01 mode, the initial ring (n = 0) structure of the field intensity is transformed into a structure with a maximum radiation intensity in the center (n = 1), and later again into a ring (n = 2). The phase front of the beam for the Ey component of the linearly polarized along the y axis TE11 mode changes from spherical to spiral with one on-axis singularity point. In the phase profile of the transverse components of the azimuthally polarized TE01 mode, a region with two and three off-axis phase singularity points appears.

Downloads

Download data is not yet available.

References

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: Terahertz beamforming, from concepts to realizations”, Apl. Photonics, 3, 051101 (2018). https://doi.org/10.1063/1.5011063

A. Forbes, “Advances in orbital angular momentum lasers”, J. Light. Technol., 41, 2079 (2023). https://doi.org/10.1109/JLT.2022.3220509

H. Wang, Q. Song, Y. Cai, Q. Lin, X. Lu, H. Shangguan, Y. Ai, and S. Xu, “Recent advances in generation of terahertz vortex beams and their applications”, Chin. Phys. B, 29, 097404 (2020). https://doi.org/10.1088/1674-1056/aba2df

N.V. Petrov, B. Sokolenko, M.S. Kulya, A. Gorodetsky, and A.V. Chernykh, “Design of broadband terahertz vector and vortex beams: I. Review of materials and components”, Light: Advanced Manufacturing, 3, 640 (2022). https://doi.org/10.37188/lam.2022.043

T. Nagatsuma, G. Ducournau, and C. Renaud, “Advances in terahertz communications accelerated by photonics”, Nat. Photonics, 10, 371 (2016). https://doi.org/10.1038/nphoton.2016.65

S.C. Chen, Z. Feng, Z., J. Li, W. Tan, L.H. Du, J. Cai, and L.G. Zhu, “Ghost spintronic THz-emitter-array microscope”, Light Sci. Appl., 9, 99 (2020). https://doi.org/10.1038/s41377-020-0338-4

D. Nobahar, S. Khorram, “Terahertz vortex beam propagation through a magnetized plasma-ferrite structure”, Opt. Laser Technol., 146, 107522 (2022). https://doi.org/10.1016/j.optlastec.2021.107522

M.T. Hibberd, A.L. Healy, D.S. Lake, V. Georgiadis, E.J.H. Smith, O.J. Finlay, and S.P. Jamison, “Acceleration of relativistic beams using laser generated terahertz pulses”, Nat. Photonics, 14, 755 (2019). https://doi.org/10.1038/s41566-020-0674-1

A. Klug, I. Nape, and A. Forbes,”The orbital angular momentum of a turbulent atmosphere and its impact on propagating structured light fields”, New J. Phys., 23, 093012 (2021). https://doi.org/10.1088/1367-2630/ac1fca

S.W. Pinnock, S. Roh, T. Biesner, A.V. Pronin, and M. Dressel, “Generation of THz vortex beams and interferometric determination of their topological charge”, IEEE Trans. Terahertz Sci. Technol., 13, 44 (2022). https://doi.org/10.1109/TTHZ.2022.3221369

A. Rubano, F. Cardano, B. Piccirillo, and L. Marrucci, “Q-plate technology: a progress review [Invited]”, J. Opt. Soc. Am. B, 36, D70D87 (2019). https://doi.org/10.1364/JOSAB.36.000D70

R. Imai, N. Kanda, T. Higuchi, K. Konishi, and M. Kuwata-Gonokami, “Generation of broadband terahertz vortex beams”, Opt. Lett., 39, 3714 (2014). https://doi.org/10.1364/OL.39.003714

Y. Yang, X. Ye, L. Niu, K. Wang, Z. Yang, and J. Liu, “Generating terahertz perfect optical vortex beams by diffractive elements”, Opt. Express, 28, 1417 (2020). https://doi.org/10.1364/OE.380076

K. Zhang, Y. Wang, S.N. Burokur, and Q. Wu, “Generating dual-polarized vortex beam by detour phase: from phase gradient metasurfaces to metagratings”, IEEE Trans. Microw. Theory Techn., 70, 200 (2022). https://doi.org/10.1109/TMTT.2021.3075251

X.D. Zhang, Y.H. Su, J.C. Ni, Z.Y. Wang, Y.L. Wang, C.W. Wang, and J.R. Chu, “Optical superimposed vortex beams generated by integrated holographic plates with blazed grating”, Appl. Phys. Lett., 111, 061901 (2017). https://doi.org/10.1063/1.4997590

S.J. Ge, Z.X. Shen, P. Chen, X. Liang, X.K. Wang, W. Hu, Y. Zhang, and Y.Q. Lu, “Generating, separating and polarizing terahertz vortex beams via liquid crystals with gradient-rotation directors”, Crystals, 7, 314 (2017). https://doi.org/10.3390/cryst7100314

S. Guan, J. Cheng, and S. Chang, “Recent progress of terahertz spatial light modulators: materials, principles and applications”, Micromachines, 13, 1637 (2022). https://doi.org/10.3390/mi13101637

A. Al Dhaybi, J. Degert, E. Brasselet, E. Abraham, and E. Freysz, “Terahertz vortex beam generation by infrared vector beam rectification”, J. Opt. Soc. Am. B, 36, 12 (2019). https://doi.org/10.1364/JOSAB.36.000012

K. Miyamoto, K. Sano, T. Miyakawa, H. Niinomi, K. Toyoda, A. Vallés, and T. Omatsu, “Generation of high-quality terahertz OAM mode based on soft-aperture difference frequency generation”, Opt. Express, 27, 31840 (2019). https://doi.org/10.1364/OE.27.031840

H. Sobhani, and E. Dadar, “Terahertz vortex generation methods in rippled and vortex plasmas”, J. Opt. Soc. Am. A, 36, 1187 (2019). https://doi.org/10.1364/JOSAA.36.001187

P. Chevalier, A. Amirzhan, F. Wang, M. Piccardo, S.G. Johnson, F. Capasso, and H.O. Everitt, “Widely tunable compact terahertz gas lasers”, Science, 366, 856 (2019). https://doi.org/10.1126/science.aay8683

J. Farhoomand, and H.M. Pickett, “Stable 1.25 watts CW far infrared laser radiation at the 119 μm methanol line”, Int. J. Infrared Millim. Waves, 8, 441 (1987). https://doi.org/10.1007/BF01013257

H.P. Röser, M. Yamanaka, R. Wattenbach, and G.V. Schultz, “Investigations of optically pumped submillimeter wave laser modes”, Int. J. Infrared Millim. Waves, 3, 839 (1982). https://doi.org/10.1007/BF01008649

M.W. Beijersbergen, R.P.C. Coerwinkel, M. Kristensen, and J.P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate”, Opt. Commun., 112, 321 (1994). https://doi.org/10.1016/0030-4018(94)90638-6

V.V. Kotlyar, and A.A. Kovalev, “Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization”, J. Opt. Soc. Am. A, 27, 372 (2010). https://doi.org/10.1364/JOSAA.27.000372

B. Gu, and Y. Cui, “Nonparaxial and paraxial focusing of azimuthal-variant vector beams”, Opt. Express, 20, 17684 (2012). https://doi.org/10.1364/OE.20.017684

Y. Zhang, L. Wang, and C. Zheng, “Vector propagation of radially polarized Gaussian beams diffracted by an axicon”, J. Opt. Soc. Am. A, 22, 2542 (2005). https://doi.org/10.1364/JOSAA.22.002542

O.V. Gurin, A.V. Degtyarev, V.A. Maslov, V.A. Svich, V.M. Tkachenko, and A.N. Topkov, “Selection of transverse modes in laser cavities containing waveguides and open parts”, Quantum Electron. 31, 346 (2001). https://doi.org/10.1070/QE2001v031n04ABEH001949

J.F. Nye, and M.V. Berry, “Dislocations in wave trains”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 336, 165 (1974). https://doi.org/10.1098/rspa.1974.0012

O.V. Gurin, A.V. Degtyarev, N.N. Dubinin, M.N. Legenkiy, V.A. Maslov, K.I. Muntean, V.N. Ryabykh, and V.S. Senyuta, “Formation of beams with nonuniform polarisation of radiation in a cw waveguide terahertz laser”, Quantum Electron., 51, 338 (2021). https://doi.org/10.1070/QEL17511

A.V. Degtyarev, M.M. Dubinin, O.V. Gurin, V.A. Maslov, K.I. Muntean, V.M. Ryabykh, V.S. Senyuta, and O.O. Svystunov, “Control over higher-order transverse modes in a waveguide-based quasi-optical resonator”, Radio Physics and Radio Astronomy, 27, 129 (2022). https://doi.org/10.15407/rpra27.02.129

Published
2024-05-05
Cited
How to Cite
Degtyarev, A. V., Dubinin, M. M., Maslov, V. A., Muntean, K. I., & Svystunov, O. O. (2024). Evolution of Vector Vortex Beams Formed by a Terahertz Laser Metal Resonator. East European Journal of Physics, (2), 121-129. https://doi.org/10.26565/2312-4334-2024-2-10