Reconstruction of Kaniadakis Holographic Dark Energy Model in Self Creation Theory of Gravity
Abstract
The primary objective of this paper is to examine a Kaniadakis holographic dark energy universe of Bianchi type-II within the framework of self-creation gravity theory. In this dark energy model, the Hubble horizon is used as the infrared cutoff, following Kaniadakis' holographic dark energy concept. We calculate various dynamical parameters in this model, including the statefinder (r,s) plane, the deceleration parameter q, the equation of state (ωde), the square speed of sound, and the ωde-ω'de prime plane. A graphical analysis of these parameters is provided across a range of free parameter values. The results reveal that the deceleration parameter demonstrates the universe's smooth transition from an early decelerated phase to the current accelerated expansion, while the equation of state parameter suggests a phantom phase. The ωde-ω'de plane reaches the thawing region, and the statefinder plane aligns with both the phantom model and Chaplygin gas. The current values of the parameters are consistent with existing observational data, and the strong energy conditions are found to be violated.
Downloads
References
S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221
A. G. Riess, et al., Astron. Soc. Pac. 112, 1284 (2000). https://doi.org/10.1086/316624
M. Tegmark, et al., Phys. Rev. D, 69, 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501
M. Sharif, and Z.J. Yousaf, Astropart. Phys. 56, 19 (2014). https://doi.org/10.1016/j.astropartphys.2014.02.006
S. Nojiri, and S. Odintsov, Phys. Lett. B. 631, 1 (2005). https://doi.org/10.1016/j.physletb.2005.10.010
T. Harko, and F.S.N. Lobo, Int. J. Mod. Phys. D, 21, 1242019 (2012). https://doi.org/10.1142/S0218271812420199
C. Brans, and R.H., Dicke, Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925
D. Saez, and V.J. Ballester, Phys. Lett. A, 113, 467 (1986). https://doi.org/10.1016/0375-9601(86)90121-0
G.A. Barber, Gen. Relativ. Gravit. 14, 117 (1982). https://doi.org/10.1007/BF00756918
T. Singh, and T. Singh, Astrophys. Space Sci. 102, 67 (1984). https://doi.org/10.1007/BF00651062
D.R.K. Reddy, Astrophys. Space Sci. 133, 389 (1987). https://doi.org/10.1007/BF00642496
V.U.M. Rao, et al., Astrophys Space Sci. 317, 83 (2008). https://doi.org/10.1007/s10509-008-9859-7
R.L. Naidu, et al.: Astrophys Space Sci. 358, 23 (2015). https://doi.org/10.1007/s10509-015-2421-5
V.U.M. Rao, and U.Y.D. Prasanthi, Can. J. Phys. 95(6), 554 (2017). https://doi.org/10.1139/cjp-2017-0014
R.R. Caldwell, and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009). https://doi.org/10.1146/annurev-nucl-010709-151330
K. Bamba, et al., Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8
S. Nojiri, et al., Phys. Rept. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001
Y. Aditya, and D.R.K. Reddy, Eur. Phys. J. C, 78, 619 (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8
V.U.M. Rao, et al., Results in Physics, 10, 469 (2018). https://doi.org/10.1016/j.rinp.2018.06.027
Y. Aditya, et al., Eur. Phys. J. C, 79, 1020 (2019). https://doi.org/10.1140/epjc/s10052-019-7534-5
U.K. Sharma, et al., IJMPD, 31, 2250013 (2022). https://doi.org/10.1142/S0218271822500134
U.Y.D. Prasanthi, and Y. Aditya, Results of Physics 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101
U.Y.D. Prasanthi, and Y. Aditya, Physics of the dark universe 31, 100782 (2021). https://doi.org/10.1016/j.dark.2021.100782
Y. Aditya, and D.R.K. Reddy, Astrophys. Space Sci. 363, 207 (2018). https://doi.org/10.1007/s10509-018-3429-4
Y Aditya, et al., Results in Physics, 12, 339 (2019). https://doi.org/10.1016/j.rinp.2018.11.074
Y. Aditya, et al. Astrophys. Space Sci. 364, 190 (2019). https://doi.org/10.1007/s10509-019-3681-2
Y. Aditya, et al., Int. J. Mod. Phys. A, 37, 2250107 (2022). https://doi.org/10.1142/S0217751X2250107X
A. Jawad, et al., Symmetry, 10, 635 (2018). https://doi.org/10.3390/sym10110635
A. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499
B. Jain, and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003). https://doi.org/10.1103/PhysRevLett.91.141302
L. Susskind, J. Math. Phys. 36, 6377 (1994). https://doi.org/10.1063/1.531249
R. Bousso, JHEP, 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004
A. Cohen, et al.: Phys. Rev. Lett. 82, 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971
M. Tavayef, et al., Phys. Lett. B, 781, 195 (2018). https://doi.org/10.1016/j.physletb.2018.04.001
C. Tsallis, and L.J.L. Cirto, Eur. Phys. J. C, 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6
A.S. Jahromi, et al., Phys. Lett. B, 780, 21 (2018). https://doi.org/10.1016/j.physletb.2018.02.052
H. Moradpour, et al., Eur. Phys. J. C, 78, 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8
Y. Aditya, and D.R.K. Reddy, Eur. Phys. J. C, 78, 619 (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8
V.U.M. Rao, et al., Results in Physics, 10, 469 (2018). https://doi.org/10.1016/j.rinp.2018.06.027
M.V. Santhi, et al., Int. J. Theor. Phys. 56, 362 (2017). https://doi.org/10.1007/s10773-016-3175-8
Y. Aditya, et al., Eur. Phys. J. C, 79, 1020 (2019). https://doi.org/10.1140/epjc/s10052-019-7534-5
A. Iqbal, A. Jawad, Physics of the Dark Universe, 26, 100349 (2019). https://doi.org/10.1016/j.dark.2019.100349
G. Kaniadakis, Physica A: Stat. Mech. and its Appl. 296(3-4), 405 (2001). https://doi.org/10.1016/S0378-4371(01)00184-4
M. Masi, Phys. Lett. A, 338, 217 (2005). https://doi.org/10.1016/j.physleta.2005.01.094
E.M. Abreu, et al., EPL (Europhysics Letters), 124, 30003 (2018). https://doi.org/10.1209/0295-5075/124/30003
H. Moradpour, et al. Eur. Phys. J. C, 80, 1 (2020). https://doi.org/10.1140/epjc/s10052-020-8307-x
A. Jawad, and A.M. Sultan, Adv. High Energy Phys. 2021, 5519028 (2021). https://doi.org/10.1155/2021/5519028
U.K. Sharma, et al., IJMPD, 31, 2250013 (2022). https://doi.org/10.1142/S0218271822500134
N. Drepanou, et al., Eur. Phys. J. C, 82, 449 (2022). https://doi.org/10.1140/epjc/s10052-022-10415-9
J. Sadeghi, et al., arXiv:2203.04375 (2022). https://doi.org/10.48550/arXiv.2203.04375
B.G. Rao, et al., East Eur. J. Phys. (1), 43 (2024). https://doi.org/10.26565/2312-4334-2024-1-03
K.S. Thorne, Astrophys. J. 148, 51 (1967). http://dx.doi.org/10.1086/149127
R. Kantowski, and R.K. Sachs, J. Math. Phys. 7, 433 (1966). https://doi.org/10.1063/1.1704952
J. Kristian, and R.K. Sachs, Astrophys. J. 143, 379 (1966). https://doi.org/10.1086/148522
C.B. Collins, et al., Gen. Relativ. Gravit. 12, 805 (1980). https://doi.org/10.1007/BF00763057
V.B. Johri, and R. Sudharsan, Australian Journal of Physics 42(2), 215 (1989). https://doi.org/10.1071/PH890215
V.B. Johri, and K. Desikan, Gen Relat Gravit 26, 1217 (1994). https://doi.org/10.1007/BF02106714
R. Caldwell, and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301
V. Sahni, et al., J. Exp. Theor. Phys. Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831
V.U.M. Rao, and U.Y.D. Prasanthi, The European Physical Journal Plus, 132, 64 (2017). https://doi.org/10.1140/epjp/i2017-11328-9
E. Sadri, B. Vakili, Astrophysics and Space Science 363, 13 (2018). https://doi.org/10.1007/s10509-017-3237-2
Y. Aditya, and D.R.K. Reddy, Astrophys. Space Sci. 363, 207 (2018). https://doi.org/10.1007/s10509-018-3429-4
U.Y. Divya Prasanthi, and Y. Aditya, Results Phys. 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101
R.L. Naidu, et al., New Astronomy, 85, 101564 (2021). https://doi.org/10.1016/j.newast.2020.101564
Y. Aditya, Bulgarian Astronomical Journal 40, 95 (2024). https://astro.bas.bg/AIJ/issues/n40/YAditya.pdf
Y. Aditya, and U.Y.D. Prasanthi, Bulgarian Astronomical Journal 38, 52 (2023). https://astro.bas.bg/AIJ/issues/n38/YAditya.pdf
K. Dasunaidu, et al., Bulgarian Astronomical Journal 39, 72 (2023). https://astro.bas.bg/AIJ/issues/n39/KDasunaidu.pdf
Y. Aditya, et al., East Eur. J. Phys. (1), 85 (2024). https://doi.org/10.26565/2312-4334-2024-1-06
A. V. Prasanthi, et al., East Eur. J. Phys. (2), 10 (2024). https://doi.org/10.26565/2312-4334-2024-2-01
K. Murali, et al., Mod. Phys. Let. A, 39, 2450106 (2024). https://doi.org/10.1142/S0217732324501062
N. Aghanim, et al., A&A 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910
S. Capozziello, et al., MNRAS, 484, 4484 (2019). https://doi.org/10.1093/mnras/stz176
P.A.R. Ade, et al., Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591
G.F. Hinshaw, et al., Astrophys. J. Suppl. 208, 19 (2018). https://doi.org/10.1088/0067-0049/208/2/19
Copyright (c) 2025 Y. Aditya, D. Tejeswararao, U.Y. Divya Prasanthi, D. Ram Babu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).