Reconstruction of Kaniadakis Holographic Dark Energy Model in Self Creation Theory of Gravity

Keywords: Bianchi type-II model, Kaniadakis holographic dark energy, Self creation Theory, Dark energy, Modified theory of gravity

Abstract

The primary objective of this paper is to examine a Kaniadakis holographic dark energy universe of Bianchi type-II within the framework of self-creation gravity theory. In this dark energy model, the Hubble horizon is used as the infrared cutoff, following Kaniadakis' holographic dark energy concept. We calculate various dynamical parameters in this model, including the statefinder (r,s) plane, the deceleration parameter q, the equation of state (ωde), the square speed of sound, and the ωde-ω'de prime plane. A graphical analysis of these parameters is provided across a range of free parameter values. The results reveal that the deceleration parameter demonstrates the universe's smooth transition from an early decelerated phase to the current accelerated expansion, while the equation of state parameter suggests a phantom phase. The ωde-ω'de plane reaches the thawing region, and the statefinder plane aligns with both the phantom model and Chaplygin gas. The current values of the parameters are consistent with existing observational data, and the strong energy conditions are found to be violated.

Downloads

References

S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

A. G. Riess, et al., Astron. Soc. Pac. 112, 1284 (2000). https://doi.org/10.1086/316624

M. Tegmark, et al., Phys. Rev. D, 69, 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501

M. Sharif, and Z.J. Yousaf, Astropart. Phys. 56, 19 (2014). https://doi.org/10.1016/j.astropartphys.2014.02.006

S. Nojiri, and S. Odintsov, Phys. Lett. B. 631, 1 (2005). https://doi.org/10.1016/j.physletb.2005.10.010

T. Harko, and F.S.N. Lobo, Int. J. Mod. Phys. D, 21, 1242019 (2012). https://doi.org/10.1142/S0218271812420199

C. Brans, and R.H., Dicke, Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925

D. Saez, and V.J. Ballester, Phys. Lett. A, 113, 467 (1986). https://doi.org/10.1016/0375-9601(86)90121-0

G.A. Barber, Gen. Relativ. Gravit. 14, 117 (1982). https://doi.org/10.1007/BF00756918

T. Singh, and T. Singh, Astrophys. Space Sci. 102, 67 (1984). https://doi.org/10.1007/BF00651062

D.R.K. Reddy, Astrophys. Space Sci. 133, 389 (1987). https://doi.org/10.1007/BF00642496

V.U.M. Rao, et al., Astrophys Space Sci. 317, 83 (2008). https://doi.org/10.1007/s10509-008-9859-7

R.L. Naidu, et al.: Astrophys Space Sci. 358, 23 (2015). https://doi.org/10.1007/s10509-015-2421-5

V.U.M. Rao, and U.Y.D. Prasanthi, Can. J. Phys. 95(6), 554 (2017). https://doi.org/10.1139/cjp-2017-0014

R.R. Caldwell, and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009). https://doi.org/10.1146/annurev-nucl-010709-151330

K. Bamba, et al., Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

S. Nojiri, et al., Phys. Rept. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

Y. Aditya, and D.R.K. Reddy, Eur. Phys. J. C, 78, 619 (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8

V.U.M. Rao, et al., Results in Physics, 10, 469 (2018). https://doi.org/10.1016/j.rinp.2018.06.027

Y. Aditya, et al., Eur. Phys. J. C, 79, 1020 (2019). https://doi.org/10.1140/epjc/s10052-019-7534-5

U.K. Sharma, et al., IJMPD, 31, 2250013 (2022). https://doi.org/10.1142/S0218271822500134

U.Y.D. Prasanthi, and Y. Aditya, Results of Physics 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101

U.Y.D. Prasanthi, and Y. Aditya, Physics of the dark universe 31, 100782 (2021). https://doi.org/10.1016/j.dark.2021.100782

Y. Aditya, and D.R.K. Reddy, Astrophys. Space Sci. 363, 207 (2018). https://doi.org/10.1007/s10509-018-3429-4

Y Aditya, et al., Results in Physics, 12, 339 (2019). https://doi.org/10.1016/j.rinp.2018.11.074

Y. Aditya, et al. Astrophys. Space Sci. 364, 190 (2019). https://doi.org/10.1007/s10509-019-3681-2

Y. Aditya, et al., Int. J. Mod. Phys. A, 37, 2250107 (2022). https://doi.org/10.1142/S0217751X2250107X

A. Jawad, et al., Symmetry, 10, 635 (2018). https://doi.org/10.3390/sym10110635

A. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

B. Jain, and A. Taylor, Phys. Rev. Lett. 91, 141302 (2003). https://doi.org/10.1103/PhysRevLett.91.141302

L. Susskind, J. Math. Phys. 36, 6377 (1994). https://doi.org/10.1063/1.531249

R. Bousso, JHEP, 07, 004 (1999). https://doi.org/10.1088/1126-6708/1999/07/004

A. Cohen, et al.: Phys. Rev. Lett. 82, 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971

M. Tavayef, et al., Phys. Lett. B, 781, 195 (2018). https://doi.org/10.1016/j.physletb.2018.04.001

C. Tsallis, and L.J.L. Cirto, Eur. Phys. J. C, 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6

A.S. Jahromi, et al., Phys. Lett. B, 780, 21 (2018). https://doi.org/10.1016/j.physletb.2018.02.052

H. Moradpour, et al., Eur. Phys. J. C, 78, 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8

Y. Aditya, and D.R.K. Reddy, Eur. Phys. J. C, 78, 619 (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8

V.U.M. Rao, et al., Results in Physics, 10, 469 (2018). https://doi.org/10.1016/j.rinp.2018.06.027

M.V. Santhi, et al., Int. J. Theor. Phys. 56, 362 (2017). https://doi.org/10.1007/s10773-016-3175-8

Y. Aditya, et al., Eur. Phys. J. C, 79, 1020 (2019). https://doi.org/10.1140/epjc/s10052-019-7534-5

A. Iqbal, A. Jawad, Physics of the Dark Universe, 26, 100349 (2019). https://doi.org/10.1016/j.dark.2019.100349

G. Kaniadakis, Physica A: Stat. Mech. and its Appl. 296(3-4), 405 (2001). https://doi.org/10.1016/S0378-4371(01)00184-4

M. Masi, Phys. Lett. A, 338, 217 (2005). https://doi.org/10.1016/j.physleta.2005.01.094

E.M. Abreu, et al., EPL (Europhysics Letters), 124, 30003 (2018). https://doi.org/10.1209/0295-5075/124/30003

H. Moradpour, et al. Eur. Phys. J. C, 80, 1 (2020). https://doi.org/10.1140/epjc/s10052-020-8307-x

A. Jawad, and A.M. Sultan, Adv. High Energy Phys. 2021, 5519028 (2021). https://doi.org/10.1155/2021/5519028

U.K. Sharma, et al., IJMPD, 31, 2250013 (2022). https://doi.org/10.1142/S0218271822500134

N. Drepanou, et al., Eur. Phys. J. C, 82, 449 (2022). https://doi.org/10.1140/epjc/s10052-022-10415-9

J. Sadeghi, et al., arXiv:2203.04375 (2022). https://doi.org/10.48550/arXiv.2203.04375

B.G. Rao, et al., East Eur. J. Phys. (1), 43 (2024). https://doi.org/10.26565/2312-4334-2024-1-03

K.S. Thorne, Astrophys. J. 148, 51 (1967). http://dx.doi.org/10.1086/149127

R. Kantowski, and R.K. Sachs, J. Math. Phys. 7, 433 (1966). https://doi.org/10.1063/1.1704952

J. Kristian, and R.K. Sachs, Astrophys. J. 143, 379 (1966). https://doi.org/10.1086/148522

C.B. Collins, et al., Gen. Relativ. Gravit. 12, 805 (1980). https://doi.org/10.1007/BF00763057

V.B. Johri, and R. Sudharsan, Australian Journal of Physics 42(2), 215 (1989). https://doi.org/10.1071/PH890215

V.B. Johri, and K. Desikan, Gen Relat Gravit 26, 1217 (1994). https://doi.org/10.1007/BF02106714

R. Caldwell, and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301

V. Sahni, et al., J. Exp. Theor. Phys. Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831

V.U.M. Rao, and U.Y.D. Prasanthi, The European Physical Journal Plus, 132, 64 (2017). https://doi.org/10.1140/epjp/i2017-11328-9

E. Sadri, B. Vakili, Astrophysics and Space Science 363, 13 (2018). https://doi.org/10.1007/s10509-017-3237-2

Y. Aditya, and D.R.K. Reddy, Astrophys. Space Sci. 363, 207 (2018). https://doi.org/10.1007/s10509-018-3429-4

U.Y. Divya Prasanthi, and Y. Aditya, Results Phys. 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101

R.L. Naidu, et al., New Astronomy, 85, 101564 (2021). https://doi.org/10.1016/j.newast.2020.101564

Y. Aditya, Bulgarian Astronomical Journal 40, 95 (2024). https://astro.bas.bg/AIJ/issues/n40/YAditya.pdf

Y. Aditya, and U.Y.D. Prasanthi, Bulgarian Astronomical Journal 38, 52 (2023). https://astro.bas.bg/AIJ/issues/n38/YAditya.pdf

K. Dasunaidu, et al., Bulgarian Astronomical Journal 39, 72 (2023). https://astro.bas.bg/AIJ/issues/n39/KDasunaidu.pdf

Y. Aditya, et al., East Eur. J. Phys. (1), 85 (2024). https://doi.org/10.26565/2312-4334-2024-1-06

A. V. Prasanthi, et al., East Eur. J. Phys. (2), 10 (2024). https://doi.org/10.26565/2312-4334-2024-2-01

K. Murali, et al., Mod. Phys. Let. A, 39, 2450106 (2024). https://doi.org/10.1142/S0217732324501062

N. Aghanim, et al., A&A 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910

S. Capozziello, et al., MNRAS, 484, 4484 (2019). https://doi.org/10.1093/mnras/stz176

P.A.R. Ade, et al., Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591

G.F. Hinshaw, et al., Astrophys. J. Suppl. 208, 19 (2018). https://doi.org/10.1088/0067-0049/208/2/19

Published
2025-03-03
Cited
How to Cite
Aditya, Y., Tejeswararao, D., Prasanthi, U. D., & Babu, D. R. (2025). Reconstruction of Kaniadakis Holographic Dark Energy Model in Self Creation Theory of Gravity. East European Journal of Physics, (1), 9-19. https://doi.org/10.26565/2312-4334-2025-1-01