Cosmic Aspects of Sharma-Mittal Holographic Dark Energy Model in Brans-Dicke Theory of Gravity

Keywords: Bianchi type-VIₒ model, Dark energy model, Brans-Dicke theory of gravity, Cosmology, Sharma-Mittal holographic dark energy

Abstract

We investigate the cosmological scenario involving spatially homogeneous and anisotropic Bianchi type-V I0 space-time in the context of the Sharma-Mittal holographic dark energy model within the framework of Brans-Dicke’s theory of gravitation. In order to achieve this objective, the Hubble, deceleration, equation-of-state parameters have been discussed. The deceleration parameter (q) is used to measure the pace at which the expansion of the universe is accelerating. The equation-of-state parameter (ωsmhde) characterizes the quintessence and vacuum areas of the universe. All the parameters demonstrate consistent behaviour following the Planck 2018 data. We assess the dynamical stability by defining the squared speed of sound and examining its behaviour. In addition, the energy conditions and the variation of ωsmhde and ω′smhde in the model indicate the present accelerating expansion of the universe.

Downloads

Download data is not yet available.

References

S. Perlmutter, et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221

A.G. Riess, et al., Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499

T. Koivisto, and D.F. Mota, Phys. Rev. D, 73, 083502 (2006). https://doi.org/10.1103/PhysRevD.73.083502

E.J. Copeland, et al., Int. J. Mod. Phys. D, 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X

R.R. Caldwell, and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009). https://doi.org/10.1146/annurev-nucl-010709-151330

K. Bamba, et al., Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8

S. Nojiri, et al., Phys. Rept. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001

Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 3, 1 (2005). https://doi.org/10.1088/1475-7516/2004/08/013

M. Li, Phys. Lett. B, 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

A. Cohen, and D. Kaplan, A. Nelson, Phys. Rev. Lett. 82, 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971

L.N. Granda, and A. Oliveros, Phys. Lett. B, 671, 199 (2009). https://doi.org/10.1016/j.physletb.2008.12.025

H. Wei, and R.G. Cai, Phys. Lett. B, 660, 113 (2008). https://doi.org/10.1016/j.physletb.2007.12.030

S. Nojiri, and S.D. Odintsov, Gen. Rel. Grav. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6

S. Nojiri, et al., Phys. Lett. B, 797, 134829 (2019). https://doi.org/10.1016/j.physletb.2019.134829

M. Tavayef, A. Sheykhi, K. Bamba, and H. Moradpour, Phys. Lett. B, 781, 195 (2018). https://doi.org/10.1016/j.physletb.2018.04.001

C. Tsallis, and L.J.L. Cirto, Eur. Phys. J. C, 73, 2487 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6

A.S. Jahromi et al., Phys. Lett. B, 780, 21 (2018). https://doi.org/10.1016/j.physletb.2018.02.052

H. Moradpour et al., Eur. Phys. J. C, 78, 829 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8

D.R.K. Reddy, et al., Astrophys Space Sci. 361, 356 (2016). https://doi.org/10.1007/s10509-016-2938-2

Y. Aditya, and D.R.K. Reddy, Eur. Phys. J. C, 78, 619 (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8

V.U.M. Rao, et al., Results in Physics, 10, 469 (2018). https://doi.org/10.1016/j.rinp.2018.06.027

M.V. Santhi, et al., Int. J. Theor. Phys. 56, 362 (2017). https://doi.org/10.1007/s10773-016-3175-8

K.D. Naidu, et al., Eur. Phys. J. Plus, 133, 303 (2018). https://doi.org/10.1140/epjp/i2018-12139-2

Y. Aditya, et al., Eur. Phys. J. C, 79, 1020 (2019). https://doi.org/10.1140/epjc/s10052-019-7534-5

S. Maity, U. Debnath, Eur. Phys. J. Plus, 134, 514 (2019). https://doi.org/10.1140/epjp/i2019-12884-6

A. Iqbal, A. Jawad, Physics of the Dark Universe, 26, 100349 (2019). https://doi.org/10.1016/j.dark.2019.100349

G. Kaniadakis, Physica A: Stat. Mech. and its Appl. 296(3-4), 405 (2001). https://doi.org/10.1016/S0378-4371(01)00184-4

M. Masi, Phys. Lett. A, 338, 217 (2005). https://doi.org/10.1016/j.physleta.2005.01.094

E.M. Abreu, et al., EPL (Europhysics Letters), 124, 30003 (2018). https://doi.org/10.1209/0295-5075/124/30003

H. Moradpour, et al. Eur. Phys. J. C, 80, 1 (2020). https://doi.org/10.1140/epjc/s10052-020-8307-x

A. Jawad, and A.M. Sultan, Adv. High Energy Phys. 2021, 5519028 (2021). https://doi.org/10.1155/2021/5519028

U.K. Sharma, et al., IJMPD, 31, 2250013 (2022). https://doi.org/10.1142/S0218271822500134

N. Drepanou et al., ur. Phys. J. C, 82, 449 (2022). https://doi.org/10.1140/epjc/s10052-022-10415-9

J. Sadeghi, et al., arXiv:2203.04375 (2022). https://doi.org/10.48550/arXiv.2203.04375

O. Akarsu, and C.B. Kilinc, Astrophys. Space Sci. 326, 315 (2010). https://doi.org/10.1007/s10509-009-0254-9

C.L. Bennett, et al., Astron. Astrophys. Suppl. Ser. 148, 1 (2003). https://doi.org/10.1086/377252

D.R.K. Reddy, et al., Can. J. Phys. 97, 932 (2019). https://doi.org/10.1139/cjp-2018-0403

Y. Aditya, et al., Astrophys. Space Sci. 364, 190 (2019). https://doi.org/10.1007/s10509-019-3681-2

Y. Aditya, and D.R.K. Reddy, Astrophys. Space Sci. 364, 3 (2019). https://doi.org/10.1007/s10509-018-3491-y

Y. Aditya, et al., Ind. J. Phys. 95, 383 (2021). https://doi.org/10.1007/s12648-020-01722-6

R.L. Naidu, et al., Astrophys. Space Sci. 365, 91 (2020). https://doi.org/10.1007/s10509-020-03796-4

K.D. Naidu, et al., Mod. Phys. A, 36, 2150054 (2021). https://dx.doi.org/10.1142/S0217732321500541

Y. Aditya, et al., New Astr. 84, 101504 (2021). https://doi.org/10.1016/j.newast.2020.101504

Y. Aditya, et al., Int. J. Mod. Phys. A, 37, 2250107 (2022). https://doi.org/10.1142/S0217751X2250107X

M.P.V.V. Bhaskara Rao, et al., New Astr. 92, 101733 (2022). https://doi.org/10.1016/j.newast.2021.101733

U.Y.D. Prasanthi, and Y. Aditya, Phys. Dark Univ. 31, 100782 (2021). https://doi.org/10.1016/j.dark.2021.100782

U.Y.D. Prasanthi, and Y. Aditya, Results Phys. 17, 103101 (2020). https://doi.org/10.1016/j.rinp.2020.103101

Y. Aditya, and U.Y.D. Prasanthi, Bulg. Astr. Journal, 38, 52 (2023). https://astro.bas.bg/AIJ/issues/n38/YAditya.pdf

Y. Aditya, Bulg. Astr. Journal, 39, 12 (2023). https://astro.bas.bg/AIJ/issues/n39/YAditya.pdf

C.H. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925

C.B. Collins, et al., Gen. Relativ. Gravit. 12, 805 (1980). https://doi.org/10.1007/BF00763057

V.B. Johri, R. Sudharsan, Australian J. of Phys. 42(2), 215 – 222 (1989). https://doi.org/10.1071/PH890215

V.B. Johri, K. Desikan, Gen Relat Gravit 26, 1217–1232 (1994). http://dx.doi.org/10.1007/BF02106714

B.D. Sharma, D.P. Mittal, J. Math. Sci. 10, 28 (1975).

R. Caldwell, and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301

N. Aghanim, et al., [Plancks Collaboration] arXiv:1807.06209v2 (2018). https://doi.org/10.48550/arXiv.1807.06209

P.A.R. Ade, et al., Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591

G.F. Hinshaw, et al., Astrophys. J. Suppl. 208, 19 (2018). https://doi.org/10.1088/0067-0049/208/2/19

Published
2024-03-05
Cited
How to Cite
Aditya, Y., Tejeswararao, D., & Prasanthi, U. D. (2024). Cosmic Aspects of Sharma-Mittal Holographic Dark Energy Model in Brans-Dicke Theory of Gravity. East European Journal of Physics, (1), 85-94. https://doi.org/10.26565/2312-4334-2024-1-06