Computational Investigation on the Structural, Electronic and Magnetic Properties of Si-Doped L10 FeNi Alloy for Clean Energy

  • Zineb Zine aLABTHOP Laborator, Faculty of Exact Sciences, University of El-Oued, El-Oued, Algeria; Department of physics, Faculty of Exact Sciences, University of El-Oued, El-Oued, Algeria https://orcid.org/0000-0001-8961-6220
  • Nassima Meftah Department of physics, Faculty of Exact Sciences, University of El-Oued, El-Oued, Algeria https://orcid.org/0000-0001-7646-8572
Keywords: Ordered L10-FeNi, Density functional theory, Rare-earth free magnets, Substitutional defects

Abstract

For the first time, this study conducts a computational analysis by employing density functional theory (DFT) to investigate the effects of silicon doping as substitutional defects on the structural, electronic, and magnetic characteristics of the L10-FeNi alloy. The aim of this study was to explore the potential applications of Si-doped FeNi compounds as alternatives to rare-earth permanent magnets. For this, we have performed full potential calculations of L10-FeNi with substitutional Si-doping within a generalized gradient approximation. Two types of substitutional Si-doping (ONi/OFe) in the Ni/Fe site of the parent alloy have been investigated. The computed formation energy (Ef) indicates that the incorporation of silicon defects increases the structural stability of tetragonally distorted L10-FeNi. Moreover, our findings demonstrate that the FeNi:Si(ONi) in the L10-structure has a stable saturation magnetization (Ms), whereas the FeNi:Si (OFe) has a small reduction in Ms. Therefore, Si-substituted FeNi alloys can be tuned to become a good candidate for permanents magnets.    

Downloads

Download data is not yet available.

References

J. Ormerod, Permanent magnet markets and applications. In Modern Permanent Magnets, (Woodhead Publishing, 2022), pp. 403-‏434.

A.H. King, and R.G. Eggert, Critical materials for permanent magnets. In Modern Permanent Magnets, (Woodhead Publishing, 2022), pp. 343-370.

J.M.D. Coey, “Perspective and prospects for rare earth permanent magnets,” Engineering, 6(2), 119-131 (2020). https://doi.org/10.1016/j.eng.2018.11.034

Z. Shao, and S. Ren, “Rare-earth-free magnetically hard ferrous materials,” Nanoscale Adv. 2(10), 4341-4349 (2020).‏ https://doi.org/10.1039/D0NA00519C

A. H. King, and R. G. Eggert, Critical materials for permanent magnets. In Modern Permanent Magnets, (Woodhead Publishing, 2022), pp. 343-370, https://doi.org/10.1016/B978-0-323-88658-1.00003-0

H. Sepehri-Amin, S. Hirosawa, and K. Hono, “Advances in Nd-Fe-B based permanent magnets,” in: Handbook of magnetic materials, 27, 269-372 (2018). https://doi.org/10.1016/bs.hmm.2018.08.003

O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu, “Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient,” Advanced materials. 23(7), 821-842 (2011). https://doi.org/10.1002/adma.201002180

S. Mandal, M. Debata, P. Sengupta, and S. Basu, “L_10 FeNi: a promising material for next generation permanent magnets,” Critical Reviews in Solid State and Materials Sciences, 48(6), 703-725 (2023). ‏https://doi.org/10.1080/10408436.2022.2107484

T.Y. Tashiro, M. Mizuguchi, T. Kojima, T. Koganezawa, M. Kotsugi, T. Ohtsuki, and K. Takanashi, “Structural and magnetic properties of FeNi thin films fabricated on amorphous substrates,” Journal of Applied Physics, 117(17), 17E309 (2015). https://doi.org/10.1063/1.4913935

S. Mandal, A. Panigrahi, A. Rath, M. Bönisch, P. Sengupta, M. Debata, and S. Basu, “Formation of 〖L1〗_0 Ordering in FeNi by Mechanical Alloying and Field-Assisted Heat Treatment: Synchrotron XRD Studies,” Acs Omega, 8(15), 13690-13701 ‏(2023). https://doi.org/10.1021/acsomega.2c07869

E.R. Scott, “Iron meteorites: Composition, age, and origin,” in: Oxford Research Encyclopedia of Planetary Science, (2020).‏

N. Meftah, S. Mostefaoui, A. Jambon, E.H. Guedda, and S. Pont, “Minor and trace element concentrations in adjacent kamacite and taenite in the Krymka chondrite,” Meteorit. Planet. Sci. 51(4), 696-717 (2016).‏ https://doi.org/10.1111/maps.12617

N. Maât, I. McDonald, R. Barua, B. Lejeune, X. Zhang, G.M. Stephen, A. Fisher, et al., “Creating, probing and confirming tetragonality in bulk FeNi alloys,” Acta Materialia, 196, 776-789 (2020). https://doi.org/10.1016/j.actamat.2020.07.019

Y. Miura, S. Ozaki, Y. Kuwahara, M. Tsujikawa, K. Abe, and M. Shirai, “The origin of perpendicular magneto-crystalline anisotropy in L_10–FeNi under tetragonal distortion,” Journal of physics: Condensed matter, 25(10), 106005 (2013), ‏ https://doi.org/10.1088/0953-8984/25/10/106005

I.Z. Hlova, O. Dolotko, M. Abramchuk, A. Biswas, Y. Mudryk, and V.K. Pecharsky, “Enhancement of hard magnetism and chemical order of synthetic L_10-FeNi,” J. Alloys Compd. 981, 173619 (2024). https://doi.org/10.1016/j.jallcom.2024.173619

S. Mandal, A. Panigrahi, A. Rath, M. Bönisch, P. Sengupta, M. Debata, and S. Basu, “Formation of 〖L1〗_0 Ordering in FeNi by Mechanical Alloying and Field-Assisted Heat Treatment: Synchrotron XRD Studies,” Acs Omega, 8(15), 13690-13701 (2023).‏ https://doi.org/10.1021/acsomega.2c07869

F. Meneses, A. Pedernera, C. Blanco, N. Bajales, S.E. Urreta, and P.G. Bercoff, “〖L1〗_0-FeNi ordered phase in AC electrodeposited iron-nickel biphasic nanowires,” Journal of Alloys and Compounds, 766, 373-381 (2018). https://doi.org/10.1016/j.jallcom.2018.06.307

M. Ali, and F. Ahmad, “A review of processing techniques for Fe-Ni soft magnetic materials,” Materials and Manufacturing Processes, 34(14), 1580-1604 (2019). ‏https://doi.org/10.1080/10426914.2019.1662038

P. Rani, J. Thakur, A. Taya, and M.K. Kashyap, “Magnetocrystalline anisotropy of Pt-doped 〖L1〗_0-FeNi compound for clean energy applications,” Vacuum, 159, 186-190 (2019).‏ https://doi.org/10.1016/j.vacuum.2018.10.023

P. Manchanda, R. Skomski, N. Bordeaux, L.H. Lewis, and A. Kashyap, “Transitionmetal and metalloid substitutions in 〖L1〗_0-ordered FeNi,” J. Appl. Phys. 115, 17A710 (2014). https://doi.org/10.1063/1.4862722

P. Rani, R. Singla, J. Thakur, A.H. Reshak, and M.K. Kashyap, “Enhancement in magnetic parameters of 〖L1〗_0-FeNi on Pd-substitution for permanent magnets,” Indian J. Phys. 97, 67–72 (2023). https://doi.org/10.1007/s12648-021-02221-y

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L.D. Marks, WIEN2k an Augmented Plane Wave þ Local Orbitals Program for Calculating Crystal Properties, Revised Edition WIEN2k, 19.1, (Vienna University of Technology, Vienna, Austria, 2019).

M. Weinert, E. Wimmer, and A.J. Freeman, “Total-energy all-electron density functional method for bulk solids and surfaces,” Phys. Rev. B, 26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571

J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

A. Edström, J. Chico, A. Jakobsson, A. Bergman, and J. Rusz, “Electronic structure and magnetic properties of 〖L1〗_0 binary alloys,” Physical Review B, 90(1), 014402 (2014).‏ https://doi.org/10.1103/PhysRevB.90.014402

W. Marks, “Multicriteria optimisation of shape of energy-saving buildings,” Building and environment, 32(4), 331-339 (1997). ‏https://doi.org/10.1016/S0360-1323(96)00065-0

F.D. Murnaghan, “The compressibility of media under extreme pressures,” Proceedings of the National Academy of Sciences, 30(9), 244-247 (1944).‏ https://doi.org/10.1073/pnas.30.9.24

M. Mizuguchi, T. Kojima, M. Kotsugi, T. Koganezawa, K. Osaka, and K. Takanashi, “Artificial fabrication and order parameter estimation of L_10-ordered FeNi thin film grown on a AuNi buffer layer,” Journal of the Magnetics Society of Japan, 35(4), 370 373 (2011).‏ https://doi.org/10.3379/msjmag.1106R008

P. Rani, J. Thakur, A. Taya, and M. K. Kashyap, “Effect of tetragonal distortion induced by interstitial C-doping in 〖L1〗_0-FeNi,” AIP Conference Proceedings, 2115(1), 030497 (2019). https://doi.org/10.1063/1.5113336

E. Poirier, F.E. Pinkerton, R. Kubic, R.K. Mishra, N. Bordeaux, A. Mubarok, L.H. Lewis, et al., “Intrinsic magnetic properties of L10 FeNi obtained from meteorite NWA 6259,” Appl. Phys. 117, 17E318 (2015). https://doi.org/10.1063/1.4916190

Published
2024-09-02
Cited
How to Cite
Zine, Z., & Meftah, N. (2024). Computational Investigation on the Structural, Electronic and Magnetic Properties of Si-Doped L10 FeNi Alloy for Clean Energy. East European Journal of Physics, (3), 369-374. https://doi.org/10.26565/2312-4334-2024-3-44