Spectral and Timing Study of V404 Cygni with CHANDRA Observations

Keywords: Accretion, Accretion disks, X-rays, Binaries-stars:individual(V404 Cygni), Black holes

Abstract

We present the spectral and timing study of V404 Cygni from all its available Chandra observations and which recently come up in public domain of Chandra data archive. The data reduction and analysis were done using CIAO 4.14 and HEASOFT 6.30.1. The spectral analysis was done using spectral fitting package XSPEC version 12.12.1, available in the Heasoft package. The spectra of the source is fitted in the energy range 0.3 -8.0 keV using two empirical spectral models - the absorbed power law and an absorbed disk-blackbody. The X-ray binary source V404 Cygni is found to be in the quiescent state having the X-ray luminosity in the range with
few times 1032 erg s−1. The source is found to be in the hard state and is well explained by power-law model with a powerlaw photon index Γ ∼ 2 with nH in the range ∼ (0.7 -1.2) × 1022 cm−2. From timing analysis, Src-1 (V404 Cygni), in all the time bins- 0.5, 1 and 2 ks, the probability for the count rate to be constant is 0.17 ×10−33 in all the observations in the year 2021 and 2023 (ObsID 23421, ObsID 23422, ObsID 23423 & ObsID 28927). However, in the year 2017 observation it is found to be less variable. This clearly shows the presence of short-term variability in kilo-seconds time-scales with the currently available Chandra data. So, it is indicative that the binary source V404 Cygni is more likely to be variable source both in long-term (years) as well as short-term (kiloseconds) scales.

Downloads

Download data is not yet available.

References

J.E. McClintock, and R.A. Remillard, Compact Stellar X-ray Sources, edited by W.H.G. Lewin, and M. van der Klis, (Cambridge University Press, 2006).

J.K. Cannizzo, Astrophysical Journal, 419, 318 (1993).

J.P. Lasota, New Astron Review, 45, 449 (2001). https://doi.org/10.1016/S1387-6473(01)00112-9

T.M. Belloni, and S.E. Motta, in: Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments, edited

by C. Bambi, Astrophys. Space Sci. Libr. 440, (Springer, Berlin, Heidelberg, 2016). pp. 61-67. https://doi.org/10.1007/978-3-662-52859-4 2

H. Tananbaum, H. Gursky, E. Kellogg, R. Giacconi, and C. Jones, ApJ, 177, L5 (1972). https://doi.org/10.1086/181042

R.A. Remillard, and J.E. McClintock, Ann. Rev. A & A, 44, 49 (2006). https://doi.org/10.1146/annurev.astro.44.051905.092532

T.M. Belloni, and L. Stella, Space Science Review, 183, 43 (2014). https://doi.org/10.1007/s11214-014-0076-0

A.R. Ingram, and S.E. Motta, New Astron. Rev. 85, 101524 (2019). https://doi.org/10.1016/j.newar.2020.101524

F. Makino, IAUC, 4782, 1 (1989).

J.C.A. Miller-Jones, P.G. Jonker, V. Dhawan, W. Brisken, M.P. Rupen, G. Nelemans, and E. Gallo, ApJ, 706, L230 (2009). https://doi.org/10.1088/0004-637X/706/2/L230

A. Jana, J.-R. Shang, D. Debnath, S.K. Chakrabarti, D. Chatterjee, and H.-K. Chang, Galaxies, 9, 39 (2021). https://doi.org/10.3390/galaxies9020039

Y. Tanaka, in: Proc. 23rd ESLAB Symp. On Two-Topics in X-ray Astronomy, ESA SP-296, 1, edited by J. Hunt, and B. Battrick, (ESA, Paris, 1989).

J. Rodriguez, M.Cadolle Bel, J. Alfonso-Garz´on, et al., A & A, 581, L9 (2015). https://doi.org/10.1051/0004-6361/201527043

J.P. Roques, E. Jourdain, A. Bazzano, et al., ApJ, 813, L22 (2015). https://doi.org/10.1088/2041-8205/813/1/L22

P.A. Jenke, C.A. Wilson-Hodge, H. Jeroen, et al., ApJ, 826 37 (2016). https://doi.org/10.3847/0004-637X/826/1/37

T. Munoz-Darias, J. Casares, M.D. S´anchez, et al., MNRAS: Letters, 465, L124 (2017). https://doi.org/10.1093/mnrasl/slw222

J.J.E. Kajava, S.E. Motta, et al., A & A, 616, A129 (2018). https://doi.org/10.1051/0004-6361/201731768

J. Khargharia, C.S. Froning, and E.L. Robinson, ApJ, 716, 1105 (2010). https://doi.org/10.1088/0004-637X/716/2/1105

A.S. Devi, R. Misra, V.K. Agrawal, and K.Y. Singh, ApJ, 664, 458 (2007). https://doi.org/10.1086/518533

R.M. Wagner, S.G. Starrfield, R.M. Hjellming, S.B. Howell, and T.J. Kreidl, ApJL, 429, L25 ( 1994). https://doi.org/10.1086/187404

R. Narayan, D. Barret, and J.E. McClintock, ApJ, 482, 448 (1997). https://doi.org/10.1086/304134

A.K.H. Kong, J.E. McClintock, M.R. Garcia, S.S. Murray, and D. Barret, ApJ, 570, 277 (2002). https://doi.org/10.1086/339501

C.K. Bradley, R.I. Hynes, A.K.H. Kong, et al., ApJ, 667, 427 (2007). https://doi.org/10.1086/520323

M.T. Reynolds, R.C. Reis, J.M. Miller, E.M. Cackett, and N. Degenaar, MNRAS, 441, 3656 (2014). https://doi.org/10.1093/mnras/stu832

J. Mart´ı, P.L. Luque-Escamilla, and M.T. Garc´ıa-Hern´andez, A& A, 586, A58 (2016). https://doi.org/10.1051/0004-6361/201527239

V. Rana, A. Loh, S. Corbel, et al., ApJ, 821, 103 (2016). https://doi.org/10.3847/0004-637X/821/2/103

Published
2024-09-02
Cited
How to Cite
Devi, S. R., Devi, A. S., & Deshamukhya, A. (2024). Spectral and Timing Study of V404 Cygni with CHANDRA Observations. East European Journal of Physics, (3), 116-124. https://doi.org/10.26565/2312-4334-2024-3-11