Spectral and Timing Study of the Newly Detected Ultraluminous X-Ray Sources in NGC 3585 Using Different Chandra Observations.

Keywords: Accretion, Accretion disks, Galaxies: individual(NGC 3585), X-rays: binaries


The present work aims to study the previously unstudied Ultraluminous X-ray sources (ULXs) in the galaxy NGC 3585 at its various epochs of Chandra observation. We report here the detection of two new ULXs viz. CXOUJ111306.0-264825 (X-1) and CXOUJ111325.3-264732 (X-2) with their bolometric luminosity > 1039erg s−1 in its various Chandra observations. X-1 was found to be a spectrally hard ULX in both the epochs where it was detected. However in the ULX, X-2, a slight hardening of the spectra was observed within a period of 17 years. Assuming isotropic emission and explained by disk blackbody model, the spectrally softer epoch of X-2 with an inner disk temperature, kTin ∼ 0.79 keV and bolometric luminosity ∼ 2.51 × 1039erg s−1 implies for X-2 to be powered by a compact object, necessarily a black hole of mass, MBH ∼ 44.85+82.11−25.92M accreting at ∼ 0.42 times the Eddington limit. The Lightcurve of X-1 and X-2 binned at 500s, 1ks, 2ks and 4ks has shown no signature of short-term variability in both the ULXs in kilo-seconds time scales. Overall, both the detected ULXs seem to be almost static sources both in long-term (years) as well as short-term (kilo-seconds) time scales with the presently available Chandra Observations.


Download data is not yet available.


S.N. Fabrika, K.E. Atapin, A.S. Vinokurov, and O.N. Sholukhova, ”Ultraluminous X-Ray Sources,” Astrophy. Bulle. 76, 6-38 (2021). https://doi.org/10.1134/S1990341321010077

E.J.M. Colbert, R. Petre, E.M. Schlegel, and S.D. Ryder, ”Soft X-Ray Emission from the Spiral Galaxy NGC 1313,” Astrophys. J. 446, 177 (1995). https://doi.org/10.1086/175777

G. Fabbiano, D.-W. Kim, and G. Trinchieri, ”An X-Ray Catalog and Atlas of Galaxies,” Astrophys. J Suppl. Ser. 80, 531-644 (1992). https://ui.adsabs.harvard.edu/link_gateway/1992ApJS...80..531F/doi:10.1086/191675

G. Fabbiano, ”X Rays From Normal Galaxies,” Ann. Rev. Astron. Astrophys. 27, 87-138 (1989). https://doi.org/10.1146/annurev.aa.27.090189.000511

D.A. Swartz, K.K. Ghosh, A.F. Tennant, and K. Wu,”The Ultra-Luminous X-ray Source Population from the Chandra Archive of Galaxies,” Astrophys. J. Suppl. Ser. 154, 519 (2004). https://ui.adsabs.harvard.edu/link_gateway/2004ApJS..154..519S/doi:10.48550/arXiv.astro-ph/0405498

A.S. Devi, R. Misra, V. Agrawal, and K.Y. Singh, ”The dependence of the estimated luminosities of ULX on spectral models,” Astrophys. J. 664, 458-466 (2007). https://doi.org/10.48550/arXiv.0704.1107

P. Kaaret, H. Feng, and T. Roberts, ”Ultraluminous X-Ray Sources,” Ann. Rev. of Astro. and Astrophy. 55, 303-341 (2017). https://doi.org/10.1146/annurev-astro-091916-055259

H.P. Earnshaw, T.P. Roberts, M.J. Middleton, D.J. Walton, and S. Mateos, ”A new, clean catalogue of extragalactic non-nuclear X-ray sources in nearby galaxies,” Mon. Not. R. Astron. Soc. 483, 5554–5573 (2019). https://doi.org/10.1093/mnras/sty3403

K. Kovlakas, A. Zezas, J.J. Andrews, A. Basu-Zych, T. Fragos, A. Hornschemeier, B. Lehmer, and A. Ptak, ”A census of ultraluminous X-ray sources in the local Universe,” Mon. Not. R. Astron. Soc. 498(4), 4790–4810 (2020). https://doi.org/10.1093/mnras/staa2481

D.J.Walton, A.D.A. Mackenzie, H. Gully, N.R. Patel, T.P. Roberts, H.P. Earnshaw, and S. Mateos, ”A multimission catalogue of ultraluminous X-ray source candidates,” Mon. Not. R. Astron. Soc. 509(2), 1587–1604 (2022). https://doi.org/10.1093/mnras/stab3001

J. Poutanen, G. Lipunova, S. Fabrika, A. G. Butkevich, and P. Abolmasov, ”Supercritically accreting stellar mass black holes as ultraluminous X-ray sources,” Mon. Not. R. Astron. Soc. 377, 1187–1194 (2007). https://doi.org/10.1111/j.1365-2966.2007.11668.x

E.S. Mukherjee, D.J. Walton, M. Bachetti, F.A. Harrison, D.Barret, E. Bellm, S.E. Boggs, et al., ”A Hard X-Ray Study of Ultraluminous X-ray Source NGC 5204 X-1 with NuSTAR and XMM-Newton,” Astrophys. J. 808, 64 (2015). https://doi.org/10.1088/0004-637X/808/1/64

O. Godet, B. Plazolles, T. Kawaguchi, J. Lasota, D. Barret, S. Farrell, V. Braito, M. Servillat, N. Webb, and N. Gehrels, Astrophys. J. 752, 34 (2012). https://ui.adsabs.harvard.edu/link_gateway/2012ApJ...752...34G/doi:10.48550/arXiv.1204.3461

A.C. Singha, and A.S. Devi, ”Bimodal Distribution of the Hyperluminous X-ray Sources,” Acta Astrono. 69, 339–360 (2019). https://doi.org/10.32023/0001-5237/69.4.3

A.R. King, M.B. Davies, M.J. Ward, G. Fabbiano, and M. Elvis, ”Ultraluminous X-Ray Sources in External Galaxies,” Astrophys. J. 552, L109–L112 (2001). https://doi.org/10.48550/arXiv.astro-ph/0104333

A.R. King, J.P. Lasota, and M. Middleton, ”Ultraluminous X-ray sources,” New Astron. Rev. 96, 101672 (2023). https://doi.org/10.1016/j.newar.2022.101672

S.A. Rappaport, P. Podsiadlowski, and E. Pfahl, ”Stellar-mass black hole binaries as ultraluminous X-ray sources,” Mon. Not. R. Astron. Soc. 356, 401–414 (2005). https://doi.org/10.1111/j.1365-2966.2004.08489.x

M.J. Middleton, J.C.A. Miller-Jones, S. Markoff, R. Fender, M. Henze, N. Hurley-Walker, Anna M. M. Scaife, et al., ”Bright radio emission from an ultraluminous stellar-mass microquasar in M 31,” Nature. 493, 187–190 (2013). https://doi.org/10.1038/nature11697

H. Feng, and P. Kaaret, ”Spectral State Transitions of the Ultraluminous X-Ray Sources X-1 and X-2 in NGC 1313,” Astrophys. J. 650, L75 (2006). https://ui.adsabs.harvard.edu/link_gateway/2006ApJ...650L..75F/doi:10.1086/508613

C. Pinto, R. Soria, D.J. Walton, A. D’Ai, F. Pintore, P. Kosec, W.N. Alston, et al., ”XMM-Newton campaign on the ultraluminous X-ray source NGC 247 ULX-1: outflows,” Mon. Not. R. Astron. Soc. 505, 5058–5074 (2021). https://doi.org/10.1093/mnras/stab1648

H. Avdan, S. Avdan, A. Akyuz, S. Balman, N. Aksaker, and I. Akkaya Oralhan, ”X-RAY SPECTRAL AND OPTICAL PROPERTIES OF A ULX IN NGC 4258 (M106),” Astrophy. J. 828, 105 (2016). https://doi.org/10.3847/0004-637X/828/2/105

A.C. Singha, and A.S. Devi, ”Study of X-ray point sources in NGC 5643 and NGC 7457 with Chandra,” Astrophys. Space Sci. 362, 1-9 (2017). https://doi.org/10.1007/s10509-017-3189-6

A.C. Singha, and A.S. Devi, ”Spectral and Temporal Analysis of Ultraluminous X-ray Sources in NGC 2276,” Acta Astronomica, 71, 261–279 (2021). https://doi.org/10.32023/0001-5237/71.4.1

D. Richstone, E.A. Ajhar, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, et al., ”Supermassive Black Holes and the Evolution of Galaxies,” Nature, 395, A14 (1998). https://doi.org/10.48550/arXiv.astro-ph/9810378

S.A.Farrell, N.A. Webb, D. Barret, O. Godet, and J.M. Rodrigues, ”An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49,” Nature, 460, 73-75 (2009). https://doi.org/10.1038/nature08083

M.C. Miller, and E.J.M. Colbert, Int. J. Mod. Phys. D. 13, 1–64 (2004). https://doi.org/10.1142/S0218271804004426

J.M. Miller, ”Present Evidence for Intermediate Mass Black Holes in ULXs and Future Prospects,” Astrophys. Space Sci. 300, 227–238 (2005). https://doi.org/10.1007/s10509-005-1181-z

H. Feng, and P. Kaaret, ”Identification of the X-Ray Thermal Dominant State in an Ultraluminous X-Ray Source in M82,” The Astrophy. J. Let. 712, L169–L173 (2010). https://doi.org/10.1088/2041-8205/712/2/L169

D.R. Pasham, T.E. Strohmayer, and R.F. Mushotzky, ”A 400-solar-mass black hole in the galaxy M82,” Nature, 513, 74–76 (2014). https://doi.org/10.1038/nature13710

H.M. Earnshaw, T.P. Roberts, L.M. Heil, M. Mezcua, D.J. Walton, C. Done, F.A. Harrison, et al., ”A variable ULX and possible IMBH candidate in M51a,”Mon. Not. R. Astron. Soc. 456, 3840-3854 (2016). https://doi.org/10.1093/mnras/stv2945

M. Mezcua, T.P. Roberts, A.P. Lobanov, and A.D. Sutton, ”The powerful jet of an off-nuclear intermediate-mass black hole in the spiral galaxy NGC 2276,” Mon. Not. R. Astron. Soc. 448, 1893–1899 (2015). https://doi.org/10.1093/mnras/stv143

T. Sanatombi, A.S. Devi, and K.Y. Singh, ”Spectral study of the Ultraluminous X-ray sources in M51 at different epochs of Chandra observation,” Chin. J. of Phys. 83, 579–598 (2023), https://doi.org/10.1016/j.cjph.2023.04.010

M. Bachetti, F. Harrison, D. Walton, B. Grefenstette, D. Chakrabarty, F. F¨urst, D. Barret, A. Beloborodov, et al., ”An ultraluminous X-ray source powered by an accreting neutron star,” Nature, 514, 202-212 (2014). https://doi.org/10.1038/nature13791

G.L. Israel, A. Papito, P. Esposito, L. Stella, L. Zampieri, A. Belfiore, G.A.R. Castillo, et al., ”Discovery of a 0.42-s pulsar in the ultraluminous X-ray source NGC 7793 P13,” Mon. Not. R. Astron. Soc. 466, L48-L52 (2017). https://doi.org/10.1093/mnrasl/slw218

S. Carpano, F. Haberl, C. Maitra, and G. Vasilopoulos, ”Discovery of pulsations from NGS 300 ULX1 and its fast period evolution,” Mon. Not. R. Astron. Soc. 476, L45-49 (2018). https://doi.org/10.1093/mnrasl/sly030

R. Sathyaprakash, T.P. Roberts, D.J. Walton, F. Fuerst, M. Bachetti, C. Pinto, W.N. Alston, et al., ”The discovery of weak coherent pulsations in the ultraluminous X-ray source NGC 1313 X-2,” Mon. Not. R. Astron. Soc. 488, L35-40 (2019). https://doi.org/10.1093/mnrasl/slz086

G.A.R. Castillo, G.L. Israel, A. Belfiore, F. Bernardini, P. Esposito, F. Pintore, et al., ”Discovery of a 2.8 s pulsar in a 2 d orbit High-Mass X-ray Binary powering the Ultraluminous X-ray source ULX-7 in M51,” Astrophys.J. 895, 60 (2020). https://doi.org/10.48550/arXiv.1906.04791

V. Doroshenko, S. Tsygankov, J. Long, A. Santangelo, S. Molkov, A. Lutovinov, L.D. Kong, et al., ”First characterization of Swift J1845.7–0037 with NuSTAR,” Astron and Astroph. 634, A89 (2020). https://doi.org/10.1051/0004-6361/201937036

G. de Vaucouleurs, Third Reference Catalogue of Bright Galaxies, (Springer, Berlin, 1991).

A. Bogdan, and M. Gilfanov, ”Soft band X/K luminosity ratios for gas-poor early-type galaxies,” Astron and Astroph. 512, A16 (2010). https://doi.org/10.1051/0004-6361/200913651

How to Cite
Devi, S. R., Devi, A. S., & Deshamukhya, A. (2023). Spectral and Timing Study of the Newly Detected Ultraluminous X-Ray Sources in NGC 3585 Using Different Chandra Observations. East European Journal of Physics, (4), 18-28. https://doi.org/10.26565/2312-4334-2023-4-02