The Low-Temperature Growth of Carbon Nanotubes Using Nickel Catalyst

  • Ilyos J. Abdisaidov Institute of Ion-Plasma and Laser Technologies named after U.A. Arifov, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0001-7473-1074
  • Sevara G. Gulomjanova Institute of Ion-Plasma and Laser Technologies named after U.A. Arifov, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
  • Ilyos Kh. Khudaykulov Institute of Ion-Plasma and Laser Technologies named after U.A. Arifov, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-2335-4456
  • Khatam B. Ashurov Institute of Ion-Plasma and Laser Technologies named after U.A. Arifov, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-7604-2333
Keywords: Catalysts, Single-walled carbon nanotubes, Multi-walled carbon nanotubes, X-ray phase analysis, Light scattering spectroscopy, Scanning electron microscopy

Abstract

This study presents the results of a comprehensive investigation into the fabrication of single-walled carbon nanotubes (SWCNTs) employing chemical vapor deposition (CVD) technique, with nickel nanoparticles serving as crucial catalysts. These nanoparticles are synthesized via the reduction of oxide precursors using hydrogen and are strategically incorporated with ethanol vapor as the primary carbon source. The effectiveness and reproducibility of this synthesis method are thoroughly validated using advanced analytical techniques. Particularly noteworthy is the demonstrated ability to conduct the process at relatively low temperatures, not exceeding 500°C, which is of significant importance. Such precise control over synthesis conditions not only augurs well for the scalability of SWCNT production but also carries substantial implications for the advancement of nanomaterial synthesis methodologies.

Downloads

Download data is not yet available.

References

N. Gupta, S. M. Gupta, and S. K. Sharma, Carbon Letters. 29, 419 (2019). https://doi.org/10.1007/s42823-019-00068-2.

I. Ashurov, S. Iskandarov, U. Khalilov, and Kh. Ashurov, Applied Solar Energy, 58(3), 334 (2022). https://doi.org/10.3103/S0003701X22030033

V.M. Rotshteyn, T.K. Turdaliev, and Kh.B. Ashurov, Applied Solar Energy, 57(6), 480 (2021). https://doi.org/10.3103/S0003701X21060153

K. Cui, J. Chang, L. Feo, C. L. Chow, and D. Lau, Frontiers in Materials, 9, 861646, (2022). https://doi.org/10.3389/fmats.2022.861646

L. Sun, X. Wang, Y. Wang, and Q. Zhang, Carbon, 122, 462-474, (2017). https://doi.org/10.1016/j.carbon.2017.07.006

B.O. Murjani, P.S. Kadu, M. Bansod, S.S. Vaidya, and M.D. Yadav, Carbon Letters, 32(5), 1207 (2022). https://doi.org/10.1007/s42823-022-00364-4

S. Vollebregt, S. Banerjee, F.D. Tichelaar, and R. Ishihara, Microelectronic Engineering, 156, 126 (2016). https://doi.org/10.1016/j.mee.2016.01.034

M. Tehrani, and P. Khanbolouki, Advances in Nanomaterials, 3-35, (2018). https://doi.org/10.1007/978-3-319-64717-3_1

S. Iijima, Nature. 354, 56 (1991). https://doi.org/10.1038/354056a0

V. Sivamaran, V. Balasubramanian, M. Gopalakrishnan, V. Viswabaskaran, A. Gourav Rao, and S. Selvamani, Nanomaterials and Nanotechnology, 12, 1 (2022). https://doi.org/10.1177/18479804221079495

J. Gao, J. Zhong, L. Bai, J. Liu, G. Zhao, and X. Sun, Scientific reports, 4(1), 3606 (2014). https://doi.org/10.1038/srep03606

A.R. Karaeva, S.A. Urvanov, N.V. Kazennov, E.B. Mitberg, and V.Z. Mordkovich, Nanomaterials, 10(11), 2279 (2020). https://doi.org/10.3390/nano10112279

T. Thurakitseree, and C. Pakpum, Applied Mechanics and Materials, 891, 195 (2019). https://doi.org/10.4028/www.scientific.net/AMM.891.19.

L. He, G. Liao, S. Hu, L. Jiang, H. Han, H. Li, and J. Xiang, Fuel, 264, 116749 (2020). https://doi.org/10.1016/j.fuel.2019.116749

R. Das, S. Bee Abd Hamid, M. Eaqub Ali, S. Ramakrishna, and W. Yongzhi, Current Nanoscience, 11(1), 23 (2015). https://doi.org/10.2174/1573413710666140818210043

M.S. Dresselhaus, A. Jorio and R. Saito, Annu. Rev. Condens. Matter Phys. 1(1), 89- (2010). https://doi.org/10.1146/annurev-conmatphys-070909-103919

A.F. Ismail, P.S. Goh, J.C. Tee, S.M. Sanip, and M. Aziz, Nano, 3(03), 127 (2008). https://doi.org/10.1142/S1793292008000927

D.P. Roe, R. Xu, and C.B. Roberts, Applied Catalysis A: General, 543, 141 (2017). https://doi.org/10.1016/j.apcata.2017.06.020

Citations

ANNEALING-INDUCED MORPHOLOGICAL EVOLUTION OF IRON NANOCATALYSTS FOR CARBON NANOTUBE GROWTH
Ismatov A.A., Romanitan C., Ashurov Kh.B., Adilov M.M. & Rahimov A.A. (2025) Eurasian Physical Technical Journal
Crossref

Influence of the Growth Parameters on RF-Sputtered CNTs and Their Temperature-Selective Application in Gas Sensors
Aleksanyan Mikayel, Sayunts Artak, Shahkhatuni Gevorg, Simonyan Zarine, Kananov Davit, Papovyan Rima & Kopecký Dušan (2025) ACS Omega
Crossref

Analysis of Temperature-Dependent Surface Properties in the Ni/SiO2/Si System During Electron Beam Deposition
Rakhimov A.A., Khudaykulov I.Kh., Ismatov A.A. & Adilov M.M. (2025) East European Journal of Physics
Crossref

Published
2024-09-02
Cited
How to Cite
Abdisaidov, I. J., Gulomjanova, S. G., Khudaykulov, I. K., & Ashurov, K. B. (2024). The Low-Temperature Growth of Carbon Nanotubes Using Nickel Catalyst. East European Journal of Physics, (3), 355-358. https://doi.org/10.26565/2312-4334-2024-3-41