Analysis of Marder’s Space-Time Tsallis Holographic Dark Energy Cosmological Model in f(R, T) Theory of Gravity

  • Abhijeet Ompratap Dhore Department of Mathematics, Shri. Dr. R.G. Rathod Arts and Science College, Murtizapur, Dist.-Akola 444 107, Maharashtra, India https://orcid.org/0009-0003-9970-3960
  • Mohini Ramrao Ugale Department of Science and Humanities, Sipna College of Engineering and Technology, Amravati 444 701, Maharshtra, India https://orcid.org/0000-0002-4795-1052
Keywords: f(R,T) gravity, Marder’s space-time, THDE, Volumetric expansion

Abstract

In this paper, the investigation explores an anisotropic cosmological model based on Marder’s space-time Tsallis holographic dark energy (THDE) within the framework of f(R, T) theory of gravity, where R represents the Ricci scalar and T signifies the trace of the stress energy-momentum tensor. field equation have solved for class of f(R, T) gravity i.e. f(R, T) = R + f(T). To obtain the precise solution, we employed the density of the THDE model along with the volumetric expansion laws, namely the power law and exponential law. Also explores the physical and geometrical aspects of the model.

Downloads

Download data is not yet available.

References

A.G.Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The astronomical journal, 116(3), 1009 (1998). https://doi.org/10.1086/300499.

S. Perlmutter, G. Aldering, M.D. Valle, S. Deustua, R.S. Ellis, S. Fabbro, ”Discovery of a supernova explosion at half the age of the Universe,” Nature, 391(6662),51-54 (1998). https://doi.org/10.1038/34124.

C.L. Bennett, R.S. Hill, G. Hinshaw, M.R. Nolta, N. Odegard, et al., ”First-year wilkinson microwave anisotropy probe (wmap)* observations: foreground emission,” The Astrophysical Journal Supplement Series, 148(1), 97 (2003). https://doi.org/10.1086/377252.

M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, et al., ”Cosmological parameters from SDSS and WMAP,” Physical review D, 69(10), 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501.

P.A. Ade, N. Aghanim, M.I.R. Alves, C. Armitage-Caplan, M. Arnaud, M. Ashdown, et al., ”Planck 2013 results, I. Overview of products and scientific results,” Astronomy and Astrophysics, 571, A1 (2014). https://doi.org/10.1051/0004-6361/201321529.

S. Weinberg, ”The cosmological constant problem,” Reviews of modern physics, 61(1), 1 (1989). https://doi.org/10.1103/RevModPhys.61.1.

J.M. Overduin, and F.I. Cooperstock, ”Evolution of the scale factor with a variable cosmological term,” Physical Review D, 58(4), 043506 (1998). https://doi.org/10.1103/PhysRevD.58.043506.

A.Y. Shaikh, ”Diagnosing renyi and tsallis holographic dark energy models with hubble’s horizon cutoff,” Indian Journal of Physics, 98, 1155–1162 (2023). https://doi.org/10.1007/s12648-023-02844-3.

A.G. Cohen, D.B. Kaplan, and A.E. Nelson, ”Effective field theory, black holes, and the cosmological constant,” Physical Review Letters, 82(25), 4971 (1999). https://doi.org/10.1103/PhysRevLett.82.4971.

M. Younas, A. Jawad, S. Qummer, H. Moradpour, and S. Rani, ”Cosmological implications of the generalized entropy based holographic dark energy models in dynamical Chern-Simons modified gravity,” Advances in High Energy Physics, 2019, 1287932 (2019). https://doi.org/10.1155/2019/1287932.

Y. Aditya, S. Mandal, P.K. Sahoo, and D.R.K. Reddy, ”Observational constraint on interacting Tsallis holographic dark energy in logarithmic Brans–Dicke theory,” The European Physical Journal C, 79(12), 1020 (2019). https://doi.org/10.1140/epjc/s10052-019-7534-5.

H. Moradpour, S.A. Moosavi, I.P. Lobo, J.M. Gra¸ca, A. Jawad, and I.G. Salako, ”Thermodynamic approach to holographic dark energy and the R´enyi entropy,” The European Physical Journal C, 78, 1-6 (2018). https://doi.org/10.1140/epjc/s10052-018-6309-8.

M. Tavayef, A. Sheykhi, K. Bamba, and H. Moradpour, ”Tsallis holographic dark energy,” Physics Letters B, 781, 195-200 (2018). https://doi.org/10.1016/j.physletb.2018.04.001.

C. Tsallis, and L.J. Cirto, ”Black hole thermodynamical entropy,” The European Physical Journal C, 73, 1-7 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6.

A.S. Jahromi, S.A. Moosavi, H. Moradpour, J.M. Gra¸ca, I.P. Lobo, I.G. Salako, and A. Jawad, ”Generalized entropy formalism and a new holographic dark energy model,” Physics Letters B, 780, 21-24 (2018). https://doi.org/10.1016/j.physletb.2018.02.052.

M.A. Zadeh, A. Sheykhi, H. Moradpour, and K. Bamba, ”Note on Tsallis holographic dark energy,” The European Physical Journal C, 78, 1-11 (2018). https://doi.org/10.1140/epjc/s10052-018-6427-3.

S. Basilakos, A. Lymperis, M. Petronikolou, and E.N. Saridakis, ”Alleviating both H0 and σ8 tensions in Tsallis cosmology,” The European Physical Journal C, 84(3), 297 (2024). https://doi.org/10.1140/epjc/s10052-024-12573-4.

A. Mohammadi, T. Golanbari, K. Bamba, and I.P. Lobo, ”Tsallis holographic dark energy for inflation,” Physical Review D, 103(8), 083505 (2021). https://doi.org/10.1103/PhysRevD.103.083505.

J. Bharali, and K. Das, ”Modified Tsallis Holographic Dark Energy,” Astrophysics, 66(3), 366-382 (2023). https://doi.org/10.1007/s10511-023-09797-9.

A. Pradhan, and A. Dixit, ”Tsallis holographic dark energy model with observational constraints in the higher derivative theory of gravity,” New Astronomy, 89, 101636 (2021). https://doi.org/10.1016/j.newast.2021.101636.

A.A. Mamon, A.H. Ziaie, and K. Bamba, ”A generalized interacting Tsallis holographic dark energy model and its thermodynamic implications,” The European Physical Journal C, 80, 1-12 (2020). https://doi.org/10.1140/epjc/s10052-020-08546-y.

M.V. Santhi, and Y. Sobhanbabu, ”Bianchi type-III Tsallis holographic dark energy model in Saez–Ballester theory of gravitation,” The European Physical Journal C, 80(12), 1198 (2020). https://doi.org/10.1140/epjc/s10052-020-08743-9.

Y. Sobhanbabu, and M.V. Santhi, ”Kantowski–Sachs Tsallis holographic dark energy model with signchangeable interaction,” The European Physical Journal C, 81(11), 1-10 (2021). https://doi.org/10.1140/epjc/s10052-021-09815-0.

B.D. Pandey, P.S. Kumar, Pankaj, and U.K. Sharma, ”New Tsallis holographic dark energy,” The European Physical Journal C, 82(3), 233 (2022). https://doi.org/10.1140/epjc/s10052-022-10171-w.

R. Saleem, I. Shahid, and M. Sabir, ”An exact solution approach to warm inflation using Tsallis and Barrow holographic dark energy entropy within Rastall gravity,” The European Physical Journal Plus, 137(2), 279 (2022). https://doi.org/10.1140/epjp/s13360-022-02494-0.

M.V. Santhi, and Y. Sobhanbabu, ”Tsallis holographic dark energy models in Bianchi type space time,” New Astronomy, 89, 101648 (2021). https://doi.org/10.1016/j.newast.2021.101648.

M. Sharif, and S. Saba, ”Tsallis holographic dark energy in f (G, T) gravity,” Symmetry, 11(1), 92 (2019). https://doi.org/10.3390/sym11010092.

M. Zubair, and L.R. Durrani, ”Exploring tsallis holographic dark energy scenario in f (R, T) gravity,’ Chinese Journal of Physics, 69, 153-171 (2021). https://doi.org/10.1016/j.cjph.2020.11.024.

A.A. Aly, ”Study of F (T) gravity in the framework of the Tsallis holographic dark energy model,” The European Physical Journal Plus, 134, 1-7 (2019). https://doi.org/10.1140/epjp/i2019-12698-6.

A. Pradhan, G. Varshney, and U.K. Sharma, ”The scalar field models of Tsallis holographic dark energy with Granda–Oliveros cutoff in modified gravity,” Canadian Journal of Physics, 99(10), 866-874 (2021). https://doi.org/10.1139/cjp-2020-0605.

S.H. Shekh, V.R. Chirde, and P.K. Sahoo, ”Energy conditions of the f (T, B) gravity dark energy model with the validity of thermodynamics,” Communications in Theoretical Physics, 72(8), 085402 (2020). https://doi.org/10.1088/1572-9494/ab95fd.

S. Wang, Y. Wang, and M. Li, ”Holographic dark energy,” Physics reports, 696, 1-57 (2017). https://doi.org/10.1016/j.physrep.2017.06.003.

B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon, ”Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures,” Reports on Progress in Physics, 79(9), 096901 (2016). https://doi.org/10.1088/0034-4885/79/9/096901.

G.T. Hooft, ”Dimensional reduction in quantum gravity,” (1993). https://doi.org/10.48550/arXiv.gr-qc/9310026.

B. Guberina, R. Horvat, and H. Nikoli´c, ”Non-saturated holographic dark energy,” Journal of Cosmology and Astroparticle Physics, 2007(01), 012 (2007). https://doi.org/10.1088/1475-7516/2007/01/012.

S. Ghaffari, M.H. Dehghani, and A. Sheykhi, ”Holographic dark energy in the DGP braneworld with Granda-Oliveros cutoff,” Physical Review D, 89(12), 123009 (2014). https://doi.org/10.1103/PhysRevD.89.123009.

A.S. Jahromi, S.A. Moosavi, H. Moradpour, J.M. Gra¸ca, I.P. Lobo, I.G. Salako, and A. Jawad, ”Generalized entropy formalism and a new holographic dark energy model,” Physics Letters B, 780, 21-24 (2018). https://doi.org/10.1016/j.physletb.2018.02.052.

D.D. Pawar, and S.P. Shahare, ”Anisotropic tilted cosmological model in f (R, T) theory of gravity,” New Astronomy, 75, 101318 (2020). https://doi.org/10.1016/j.newast.2019.101318.

M.V. Santhi, A.S. Rao, T. Chinnappalanaidu, and S.S. Madhu, ”Bulk viscous string cosmological model in a modified theory of gravity,” Mathematical Statistician and Engineering Applications, 71(3s2), 1056-1072 (2022). https://doi.org/10.1142/S0219887819500051.

S. Ayg¨un, ”Marder type universe with bulk viscous string cosmological model in f(R, T) gravity,” Turkish Journal of Physics, 41(5), 436-446 (2017). https://doi.org/10.3906/fiz-1704-14.

T. Harko, F.S. Lobo, S.I. Nojiri, and S.D. Odintsov, ”f(R, T) gravity,” Physical Review D, 84(2), 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020.

P.K. Sahoo, B. Mishra, and S.K. Tripathy, ”Kaluza–Klein cosmological model in f(R, T) gravity with Λ(T),” Indian Journal of Physics, 90, 485-493 (2016). https://doi.org/10.1007/s12648-015-0759-8.

V.R. Chirde, and S.H. Shekh, ”Plane symmetric dark energy models in the form of wet dark fluid in f(R, T) gravity,” Journal of Astrophysics and Astronomy, 37, 1-16 (2016). https://doi.org/10.1007/s12036-016-9391-z.

Published
2024-06-01
Cited
How to Cite
Dhore, A. O., & Ugale, M. R. (2024). Analysis of Marder’s Space-Time Tsallis Holographic Dark Energy Cosmological Model in f(R, T) Theory of Gravity. East European Journal of Physics, (2), 36-47. https://doi.org/10.26565/2312-4334-2024-2-03