Thermally Activated Delayed Fluorescence in Organic Semiconductors and Its Application in Light-Emitting Diodes
Abstract
The presence of the effect of thermally activated delayed fluorescence (TADF) in organic light-emitting materials (emitters), manifested in the "collecting" of triplet excitons in organic semiconductor complexes that do not contain noble metals, creates excellent prerequisites for the application of TADF materials in the technology of manufacturing organic light-emitting diodes (OLED). The significant progress in solving theoretical and technical problems, achieved in the process of development of highly efficient TADF materials, paves the way for the formation of the future of organic electronics. This review presents the analyses of the nature of the long-term fluorescence generation mechanism at the molecular level and the up-to-date strategies for designing TADF donor-acceptor materials, as well as exciplex intermolecular complexes. Special attention is focused on the analysis of TADF emitter ambipolar materials with a highly twisted, rigid molecular structure, which reveal a tendency towards the multi-channel emission mechanisms and their implementation in a variety of OLED structure architectures.
Downloads
References
S.R. Forrest, D.D.C. Bradley, and M.E. Thompson, Advanced Materials, 15(13), 1043 (2003). https://doi.org/10.1002/adma.200302151
Fröbel, M.; Schwab, T.; Kliem, M.; Hofmann, S.; Leo, K.; Gather, M. C. Light: Sci. Appl. 4, e247 (2015). https://doi.org/10.1038/lsa.2015.20
N. Ohon, T. Bulavinets, I. Yaremchuk, and R. Lesyuk, East European Journal of Physics, 4, 6-22 (2022). https://doi.org/10.26565/2312-4334-2022-4-01
F. Dumur, Org. Electron. 21, 27 (2015). https://doi.org/10.1016/j.orgel.2015.02.026
M.A. Baldo, D.F. O’Brien, M.E. Thompson, and S.R. Forrest, Physical Review B, 60(20), 14422 (1999). https://doi.org/10.1103/PhysRevB.60.14422
M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Nature, 395, 151 (1998). https://doi.org/10.1038/25954
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234 (2012). https://doi.org/10.1038/nature11687
Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 40, 2943 (2011). https://doi.org/10.1039/c0cs00160k
M. Godumala, S. Choi, M.J. Cho, and D.H.J. Choi, Mater. Chem. C, 4, 11355 (2016). https://doi.org/10.1039/C6TC04377A
H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hofbeck, and T. Fischer, Coordination Chemistry Reviews, 255(21), 2622 (2011). https://doi.org/10.1016/j.ccr.2011.01.042
M.Y. Wong, and E. Zysman-Colman, Adv. Mater. 29, 1605444 (2017). https://doi.org/10.1002/adma.201605444
Y. Li, J.-Y. Liu, Y.-D. Zhao, and Y.-C. Cao, Mater. Today, 20, 258 (2017). https://doi.org/10.1016/j.mattod.2016.12.003
Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, et al., Chem. Soc. Rev. 46, 915 (2017). https://doi.org/10.1039/C6CS00368K
X. Tan, D. Volyniuk, T. Matulaitis, J. Keruckas, K. Ivaniuk, I. Helzhynskyy, P. Stakhira, and J.V.s Grazulevicius, Dyes and Pigments, 177, 108259 (2020). https://doi.org/10.1016/j.dyepig.2020.108259
A. Bucinskas, K. Ivaniuk, G. Baryshnikov, O. Bezvikonnyi, P. Stakhira, D. Volyniuk, B. Minaev, et al., Organic Electronics, 86, 105894 (2020). https://doi.org/10.1016/j.orgel.2020.105894
N. Bunzmann, B. Krugmann, S. Weissenseel, L. Kudriashova, K. Ivaniuk, and P. Stakhira, Advanced Electronic Materials, 7, 2000702 (2021). https://doi.org/doi.org/10.1002/aelm.202000702
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234 (2012). https://doi.org/10.1038/nature11687
Q.S. Zhang, B. Li, S.P. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nat. Photonics, 8, 326 (2014). https://doi.org/10.1038/nphoton.2014.12
S.Y. Lee, T. Yasuda, Y.S. Yang, Q. Zhang, and C. Adachi, Angew. Chem., Int. Ed. 126, 6520 (2014). https://doi.org/10.1002/ange.201402992
J. Miller, Phys. Today, 66, 10 (2013). https://doi.org/10.1063/PT.3.2166
Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, et al., Adv. Mater. 26, 7931 (2014). https://doi.org/10.1002/adma.201402532
D.R. Lee, B.S. Kim, C.W. Lee, Y. Im, K.S. Yook, S.H. Hwang, and J.Y. Lee, ACS Appl. Mater. Interfaces, 7, 9625 (2015). https://doi.org/10.1021/acsami.5b01220
J.W. Sun, J.H. Lee, C.K. Moon, K.H. Kim, H. Shin, and J.J. Kim, Adv. Mater. 26, 5684 (2014). https://doi.org/10.1039/C9RA02875G
Y. Im, M. Kim, Y.J. Cho, J.-A. Seo, K.S. Yook, and J.Y. Lee, Chem. Mater. 29, 1946 (2017). https://doi.org/10.1021/acs.chemmater.6b05324
L. Yao, B. Yang, and Y. Ma, Science China Chemistry, 57, 335 (2014). https://doi.org/10.1007/s11426-013-5046-y
Y. Im, S.Y. Byun, J.H. Kim, D.R. Lee, C.S. Oh, K.S. Yook, J.Y. Lee, Adv. Funct. Mater. 27, 1603007 (2017). https://doi.org/10.1002/adfm.201603007
X. Cai, Z. Qiao, M. Li, X. Wu, Y. He, X. Jiang, Y. Cao, and S.J. Su, Angew. Chem. Int. Ed. 58, 13522 (2019). https://doi.org/10.1002/anie.201906371
Z. Mao, Z. Yang, C. Xu, Z. Xie, L. Jiang, F.L. Gu, J. Zhao, et al., Chem. Sci. 10, 7352 (2019). https://doi.org/10.1039/C9SC02282A
H. Fu, Y.-M. Cheng, P.-T. Chou, and Y. Chi, Mater. Today, 14, 472 (2011). https://doi.org/10.1016/S1369-7021(11)70211-5
B. Li, Z. Yang, W. Gong, X. Chen, D.W. Bruce, S. Wang, H. Ma, et al., Adv. Opt. Mater. 9, (2021). https://doi.org/10.1002/anie.202301896
W.-C. Chen, C.-S. Lee, and Q.-X. Tong, J. Mater. Chem. C, 3, 10957 (2015). https://doi.org/10.1039/C5TC02420J
M. Zhu, and C. Yang, Chem. Soc. Rev. 42, 4963 (2013). https://doi.org/10.1039/c3cs35440g
S. Winter, S. Reineke, K. Walzer, and K. Leo, Proc. SPIE, 6999, 69992N (2008). https://doi.org/10.1117/12.782784
M. Liu, R. Komatsu, X. Cai, H. Sasabe, T. Kamata, K. Nakao, K. Liu, et al., Adv. Opt. Mater. 5, (2017). https://doi.org/10.1002/adom.201700334
W.L. Tsai, et al. Chem. Commun. 51, 13662 (2015). https://doi.org/10.1039/C5CC05022G
F.B. Dias, K.N. Bourdakos, V. Jankus, K.C. Moss, K.T. Kamtekar, V. Bhalla, J. Santos, et al., Adv. Mater. 25, 3707 (2013). https://doi.org/10.1002/adma.201300753
S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S.Y. Lee, H. Nomura, N. Nakamura, et al., Nature Materials, 14, 330 (2015). https://doi.org/10.1038/nmat4154
Q. Zhang, et al., Adv. Mater. 27, 2096 (2015). https://doi.org/10.1002/adma.201405474
J. Guo, et al., Adv. Funct. Mater. 27, 1606458 (2017). https://doi.org/10.1002/adfm.201606458
J. Huang, et al., Angew. Chem. Int. Ed. 129, 13151 (2017). https://doi.org/10.1002/anie.201706752
X. Hu, N. Aizawa, M. Kim, M. Huang, Z. Li, G. Liu, H. Gao, et al., Chemical Engineering Journal, 434, 134728, (2022). https://doi.org/10.1016/j.cej.2022.134728
S. Kesari, B.K. Mishra, and A.N. Panda, Chemical Physics Letters, 791, 139383 (2022). https://doi.org/10.1016/j.cplett.2022.139383
F.B. Dias, T.J. Penfold, and A. P. Monkman, Methods Appl Fluoresc. 5, 012001 (2017). https://doi.org/10.1088/2050-6120/aa537e
S.-C. Ji, T. Zhao, Z. Wei, L. Meng, X.-D. Tao, M. Yang, X.-L. Chen, and C.-Z. Lu, Chemical Engineering Journal, 435, 134868 (2022). https://doi.org/10.1016/j.cej.2022.134868
K. Suzuki, S. Kubo, K. Shizu, T. Fukushima, A. Wakamiya, Y. Murata, C. Adachi, and H. Kaji, Angew. Chem. Int. Ed. 54, 15231 (2015). https://doi.org/10.1002/anie.201508270
M.-S. Lin, et al. Mater. Chem. 22, 16114 (2012). https://doi.org/10.1039/C2JM32717A
Q. Zhang, et al. Nat. Photon. 8, 326 (2014). https://doi.org/10.1038/nphoton.2014.12
I.S. Park, S.Y. Lee, C. Adachi, and T. Yasuda, Adv. Funct. Mater. 26, 1813 (2016). https://doi.org/10.1002/adfm.201505106
Y.J. Cho, K.S. Yook, and J.Y. Lee, Adv. Mater. 26, 6642 (2014). https://doi.org/10.1002/adma.201402188
S. Hirata, et al., Nat. Mater. 14, 330 (2015). https://doi.org/10.1038/nmat4154
A. Senes, et al., J. Mater. Chem. C, 5, 6555 (2017). https://doi.org/10.1039/C7TC01568B
B.S. Kim, and J.Y. Lee, ACS Appl. Mater. Interfaces, 6, 8396 (2014). https://doi.org/10.1021/am501301g
Y. Seino, S. Inomata, H. Sasabe, Y.J. Pu, and J. Kido, Adv. Mater. 28, 2638 (2016). https://doi.org/10.1002/adma.201503782
M.P. Gaj, C. Fuentes-Hernandez, Y. Zhang, S.R. Marder, and B. Kippelen, Org. Electron. 16, 109 (2015). https://doi.org/10.1007/s00894-016-3047-4
J. Zhang, et al., Adv. Mater. 28, 479 (2016). https://doi.org/10.1002/adma.201502772
P. Dos Santos, et al., J. Phys. Chem. Lett. 7, 3341 (2016). https://doi.org/10.1021/acs.jpclett.6b01542
J. Nishide, H. Nakanotani, Y. Hiraga, and C. Adachi, Appl. Phys. Lett. 104, 233304 (2014). https://doi.org/10.1063/1.4882456
D. Zhang, L. Duan, Y. Li, D. Zhang, and Y. Qiu, J. Mater. Chem. C, 2, 8191 (2014). https://doi.org/10.1039/C4TC01289E
X.L. Li, et al., Adv. Mater. 28, 4614 (2016). https://doi.org/10.1002/adma.201505963
E. Angioni, M. Chapran, K. Ivaniuk, N. Kostiv, V. Cherpak, P. Stakhira, A. Lazauskas, et al., J. Mater. Chem. C, 4, 3851 (2016). https://doi.org/10.1039/C6TC00750C
S. Nowy, B.C. Krummacher, J. Frischeisen, N.A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008). https://doi.org/10.1063/1.3043800
C. Mayr, et al., Adv. Funct. Mater. 24, 5232 (2014). https://doi.org/10.1002/adfm.201400495
J. Li, R. Zhang, Z. Wang, B. Zhao, J. Xie, F. Zhang, H. Wang, and K. Guo, Adv. Opt. Mater. 6(6), 1701256 (2018). https://doi.org/10.1002/adom.201701256
K. Wu, Z. Wang, L. Zhan, C. Zhong, S. Gong, G. Xie, and C. Yang, J. Phys. Chem. Lett. 9, 1547 (2018). https://doi.org/10.1021/acs.jpclett.8b00344
X. Dong, S. Wang, C. Gui, H. Shi, F. Cheng, and B. Z. Tang, Tetrahedron, 74, 497 (2018). https://doi.org/10.1016/j.tet.2017.12.022
I.H. Lee, W. Song, and J.Y. Lee, Org. Electron. 29, 22 (2016). https://doi.org/10.1002/adma.201605444
S. Xu, T. Liu, Y. Mu, Y.-F. Wang, Z. Chi, C.-C. Lo, S. Liu, et al., Angew. Chem. Int. Ed. 54, 874 (2015). https://doi.org/10.1002/anie.201409767
Z. Xie, C. Chen, S. Xu, J. Li, Y. Zhang, S. Liu, J. Xu, and Z. Chi, Angew. Chem. Int. Ed. 54, 7181 (2015). https://doi.org/10.1002/anie.201502180
Copyright (c) 2024 Serhii Melnikov, Ihor Helzhynskyi, Tatyana Bulavinets, Pavlo Stakhira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).