Microstructure, Nano-, and Macro-Indentation Characterization of AISI 302 Steel After High-Temperatures Aging

  • Omar Ben Lenda Laboratory of Physical-Chemistry of Processes and Materials, Faculty of Sciences and Technology Settat, Hassan 1st University, Settat, Morocco https://orcid.org/0009-0008-1979-5508
  • Hajar El Ganich Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, Morocco https://orcid.org/0000-0003-3303-607X
  • El Madani Saad Laboratory of Physical-Chemistry of Processes and Materials, Faculty of Sciences and Technology Settat, Hassan 1st University, Settat, Morocco https://orcid.org/0000-0003-3621-1339
Keywords: AISI 302 Steel, Aging, Microstructure, Austenite, Grain growth, Nanohardness, Nanoindentation, Macro-hardness

Abstract

The structural and mechanical studies of the AISI 302 steel aim to design a correct heat treatment in order to optimize its mechanical properties. In this study, we investigated the influence of temperature and time of aging on the structural and mechanical characteristics of the AISI 302 steel. The steel was aged at temperatures of 1100°C and 1200°C and for times ranging from 0 to 6000 minutes. The structural and mechanical characterization techniques used were the metallurgical microscope, nanoindentation technique, and macro-hardness test. At the microstructural level, an increase in the time or temperature of the aging contributed to an increase in the austenite grains size of AISI 302 steel. This microstructural change led to a decrease in the nanohardness and a drop in the macro-hardness between the unaged and aged conditions of AISI 302 steel.

Downloads

Download data is not yet available.

References

J.K.L. Lai, C.H. Shek, and K.H. Lo, Stainless steels: An introduction and their recent developments, (Bentham Science Publishers, Beijing, China, 2012), pp. 23.

J. R. Davis, Alloy digest sourcebook: stainless steels, (ASM international, Materials Park, Ohio, USA, 2000), p. 7.

S. L. Chawla, Materials selection for corrosion control, (ASM international, Materials Park, Ohio, USA, 1993), p. 117.

F. Cardarelli, Materials Handbook: A Concise Desktop Reference, 2nd ed. (Springer Science & Business Media, London, UK, 2008), p. 102.

N.A. Savinkov, O.M. Bulanchuk, and A.A. Bizyukov, East. Eur. J. Phys. 3, 102 (2021). https://doi.org/10.26565/2312-4334-2021-3-16

I. Kolodiy, O. Kalchenko, S. Karpov, V. Voyevodin, M. Tikhonovsky, O. Velikodnyi, G.Tolmachova, R. Vasilenko, and G. Tolstolutska, East. Eur. J. Phys. 2, 105 (2021). https://doi.org/10.26565/2312-4334-2021-2-07

V. Voyevodin, M. Tikhonovsky, G. Tolstolutska, H. Rostova, R. Vasilenko, O. Kalchenko, N. Andrievska, and O. Velikodnyi, East. Eur. J. Phys. 3, 93 (2020), https://doi.org/10.26565/2312-4334-2020-3-12

N. Filonenko, A. Babachenko, and G. Kononenko, East Eur. J. Phys. 2, 46 (2019), https://doi.org/10.26565/2312-4334-2019-2-07

V.A. Belous, Yu.A. Zadneprovskiy, N.S. Lomino, I.S. Domnich, and T.I. Bevs, East Eur. J. Phys. 4, 98 (2018), https://doi.org/10.26565/2312-4334-2018-4-12

O. Ben lenda, S. Benmaziane, A. Tara, and E. Saad, E3S Web Conf. 297, (2021), https://doi.org/10.1051/e3sconf/202129701044

D. Dong, F. Chen, and Z. Cui, J. Mater. Eng. Perform. 25, 152 (2016), https://doi.org/10.1007/s11665-015-1810-9

Z. Li, Z. Wen, F. Su, R. Zhang, and Z. Li, J. Mater. Res. 31, 2105 (2016), https://doi.org/10.1557/jmr.2016.248

S. Benmaziane, O. Ben Lenda, S. Saissi, L. Zerrouk, and E. Saad, Recent Pat. Mech. Eng. 15, 486 (2022), http://dx.doi.org/10.2174/2212797615666220816123154

Z. B. Liu, X. Tu, X. H. Wang, J. X. Liang, Z. Y. Yang, Y. Q. Sun, and C. J. Wang, J. Iron Steel Res. Int. 27, 732 (2020), https://doi.org/10.1007/s42243-020-00429-6

R.C. Chen, C. Hong, J.J. Li, Z.Z. Zheng, and P.C. Li, Procedia Eng. 207, 663 (2017), https://doi.org/10.1016/j.proeng.2017.10.1038

C. Yue, L. Zhang, S. Liao, and H. Gao, J. Mater. Eng. Perform. 19, 112 (2010), https://doi.org/10.1007/s11665-009-9413-y

Y. Su, R. Song, T. Wang, H. Cai, J. Wen, and K. Guo, Mater. Lett. 260, 1 (2020), https://doi.org/10.1016/j.matlet.2019.126919

S. Li, Y. Wang, S. Li, H. Zhang, F. Xue, and X. Wang, Mater. Des. 50, 886 (2013), https://doi.org/10.1016/j.matdes.2013.02.061

G. Liu, Y. Wang, S. Li, and X. Wang, J. Mater. Eng. Perform. 27, 4714 (2018), https://doi.org/10.1007/s11665-018-3540-2

O. Ben Lenda, E. Saad, A. Tara, and O. Jbara, Adv. Mater. Process. Technol. 8, 3859 (2022), https://doi.org/10.1080/2374068X.2022.2036443

H.S. Khatak, and B. Raj, Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring (Woodhead Publishing, Cambridge, UK, 2002), p. 6

G.F. Vander Voort, Metallography, Principles and Practice (ASM International, Materials Park, Ohio, USA, 1999), p. 649

M. Yovanovich, in: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (American Institute of Aeronautics and Astronautics, Reno, Nevada, 2006), pp. 1-28.

W.C. Oliver, and G.M. Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564

G.M. Pharr, W.C. Oliver, and F.R. Brotzen, J. Mater. Res. 7, 613 (1992). https://doi.org/10.1557/JMR.1992.0613

E. Broitman, Tribol. Lett. 65, 1 (2017), https://doi.org/10.1007/s11249-016-0805-5

G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design (ASM international, Materials Park, Ohio, USA, 2003), pp. 250-251

Y. Xu, J. Liu, Y. Zhao, and Y. Jiao, Philos. Mag. 101, 77 (2021). https://doi.org/10.1080/14786435.2020.1821113

M. Militzer, E.B. Hawbolt, and T.R. Meadowcroft, Metall. Mater. Trans. A, 27, 3399 (1996). https://doi.org/10.1007/BF02595433

S.H. Mohamadi Azghandi, V. Ghanooni Ahmadabadi, and A. Zabett, Philos. Mag. 94, 2758 (2014). https://doi.org/10.1080/14786435.2014.932460

B.R. Patterson, and Y. Liun, Metall. Trans. A. 23, 2481 (1992). https://doi.org/10.1007/BF02658051

T.H. Ahn, C.S. Oh, K. Lee, E.P. George, and H.N. Han, J. Mater. Res. 27, 39 (2012), https://doi.org/10.1557/jmr.2011.208

N.K. Mukhopadhyay, and P. Paufler, Int. Mater. Rev. 51, 209 (2006), https://doi.org/10.1179/174328006X102475

O. Ben Lenda, A. Tara, F. Lazar, O. Jbara, A. Hadjadj, and E. Saad, Strength Mater. 52, 71 (2020). https://doi.org/10.1007/s11223-020-00151-4

S.L. Li, Y.L. Wang, and X.T. Wang, Mater. High Temp. 32, 524 (2015). https://doi.org/10.1179/1878641314Y.0000000040

G. Liu, Y. Wang, S. Li, K. Du, and X. Wang, Mater. High Temp. 33, 15 (2016). https://doi.org/10.1179/1878641315Y.0000000014

S.L. Li, Y.L. Wang, H.L. Zhang, S.X. Li, K. Zheng, F. Xue, and X.T. Wang, J. Nucl. Mater. 433, 41 (2013). https://doi.org/10.1016/j.jnucmat.2012.09.004

J. Choi, C.S. Seok, S. Park, and G. Kim, J. Mater. Res. Technol. 8, 2011 (2019). https://doi.org/10.1016/j.jmrt.2018.11.017

E.O. Hall, Proc. Phys. Soc. B, 64, 747 (1951). https://doi.org/10.1088/0370-1301/64/9/303

N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)

A.M. Glezer, and I.E. Permyakova, Melt-Quenched Nanocrystals (CRC Press, Boca Raton, Florida, USA, 2013).

Published
2023-12-02
Cited
How to Cite
Ben Lenda, O., El Ganich, H., & Saad, E. M. (2023). Microstructure, Nano-, and Macro-Indentation Characterization of AISI 302 Steel After High-Temperatures Aging. East European Journal of Physics, (4), 267-273. https://doi.org/10.26565/2312-4334-2023-4-33