X-Ray Diffraction and Raman Spectroscopy Analyses of GaSb-Enriched Si Surface Formed by Applying Diffusion Doping Technique

  • Xalmurat M. Iliyev Tashkent state technical university, Tashkent, Uzbekistan
  • Vladimir B. Odzhaev Belarusian State University, Minsk, Republic of Belarus
  • Sobir B. Isamov Tashkent state technical university, Tashkent, Uzbekistan https://orcid.org/0000-0001-5669-9306
  • Bobir O. Isakov Tashkent state technical university, Tashkent, Uzbekistan https://orcid.org/0000-0002-6072-3695
  • Bayrambay K. Ismaylov Tashkent state technical university, Tashkent, Uzbekistan https://orcid.org/0000-0002-5880-4568
  • Kutub S. Ayupov Tashkent state technical university, Tashkent, Uzbekistan https://orcid.org/0000-0002-2521-3921
  • Shahzodbek I. Hamrokulov Tashkent state technical university, Tashkent, Uzbekistan
  • Sarvinoz O. Khasanbaeva Tashkent state technical university, Tashkent, Uzbekistan
Keywords: Silicon, Gallium, Antimony, Doping, Diffusion, Microsized islands


The paper studies the properties of surface and near-surface region of a single crystalline silicon sample doped with atoms of Ga (AIII) and Sb (BV). n-type single-crystal Si wafers were chosen as substrates, and samples were size of 8×10×0.5 mm3. For diffusion into silicon, Ga and Sb impurities were used with a purity of 99.999 and 99.998, respectively. The authors propose that a new heterostructure might form in the near-surface region of silicon that could be engineered by applying a relatively cheap diffusion method. The experimental and analysis results show that the composition and absorption spectrum of silicon start manifest certain changes, and can be used in the future as a functional material for solar cells. The result showed that randomly located islands with an average diameter of 1–15 µm are formed on the substrate surface. X-ray diffraction analysis was carried out using a Rigaku diffractometer to study the crystallographic parameters of islands formed with the participation of Ga and Sb atoms on the silicon surface. The energy spectrum was studied on Nanofinder High End Raman spectrometer (LOTIS TII) in order to determine the presence of complexes of Ga and Sb atoms within islands formed as a result of diffusion. The optical emission spectra in the new structure were studied using a Lambda 950 spectrophotometer. The measurements were carried out at room temperature, i.e., at 300°K. Having studied the results of X-ray analysis, Raman spectroscopy, and optical spectroscopy, the authors have revealed that Ga and Sb atoms form new Si0.44(GaSb)0.56 and Si0.75(GaSb)0.25-type binary compounds on Si surface.


Download data is not yet available.


Y. Yin, J. Li, Y. Xu, H.K. Tsang, and D. Dai, “Silicon-graphene photonic devices,” Journal of Semiconductors, 39(6), 061009/1-8 (2018). https://doi.org/10.1088/1674-4926/39/6/061009

W. Yang, Y. Li, F. Meng, H. Yu, M. Wang, P. Wang, G. Luo, et al., “III–V compound materials and lasers on silicon,” Journal of Semiconductors, 40, 101305 (2019). http://doi.org/10.1088/1674-4926/40/10/101305

M. Levinshtein, S. Rumyantsev, and M. Shur, editors, Semiconductor parameters. Handbook series on semiconductor parameters. (World Scientific Publishing, 1996). Vol. 1.

A.A.M. Monzur-Ul-Akhir, M. Mori, and K. Maezawa, “Heteroepitaxial growth of InGaSb on GaSb/Si(111)–√3×√3-Ga surface phase with a two-step growth method to investigate the impact of high-quality GaSb buffer layer,” Phys. Status Solidi B, 254(2), 1600528 (2017). https://doi.org/10.1002/pssb.201600528

A.A.M. Monzur-Ul-Akhir, M. Mori, and K. Maezawa, “An investigation of the crystalline nature for GaSb films on Si(111) at varied growth temperature and growth rate,” Japanese Journal of Applied Physics, 58, (SIIA17) (2019). https://doi.org/10.7567/1347-4065/ab23f8

N. Bertru, M. Nouaoura, J. Bonnet, and L. Lassabatere, “GaSb molecular beam epitaxy growth on vicinal surfaces studied by RHEED,” Journal of Crystal Growth. 160, 1-6 (1996). https://doi.org/10.1016/0022-0248(95)00435-1

R. Machida, K. Akahane, I. Watanabe, S. Hara, S. Fujikawa, A. Kasamatsu, and H.I. Fujishiro, “Advantage of heteroepitaxial GaSb thin-film buffer and GaSb dot nucleation layer for GaSb/AlGaSb multiple quantum well structure grown on Si(1 0 0) substrate by molecular beam epitaxy,” Journal of Crystal Growth, 507, 357-361 (2019). https://doi.org/10.1016/j.jcrysgro.2018.11.026

J.B. Rodriguez, K. Madiomanana, L. Cerutti, A. Castellano, E. Tournié, “X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates,” Journal of Crystal Growth, 439, 33-39 (2016). http://dx.doi.org/10.1016/j.jcrysgro.2016.01.005

M. Yano, H. Furuse, Y. Iwai, K. Yoh, and M. Inoue, “Raman scattering analysis of InAs/GaSb ultrathin-layer superlattices grown by molecular beam epitaxy,” Journal of Crystal Growth, 127, 807-811 (1993). https://doi.org/10.1016/0022-0248(93)90737-H

A. Guivarc’h, Y. Ballini, Y. Toudic, M. Minier, P. Auvray, B. Guenais, J. Caulet, et al., “ErSb/GaSb(OQl) and GaSb/ErSb/GaSb(OOl) heterostructures and [ErSb,GaSb] superlattices: Molecular beam epitaxy growth and characterization,” Journal of Applied Physics, 75, 2876-2883 (1994). https://doi.org/10.1063/1.356181

K. Krishnaswami, S.R. Vangala, H.M. Dauplaise, L.P. Allen, G. Dallas, D. Bakken, D.F. Bliss, and W.D. Goodhue, “Molecular beam epitaxy on gas cluster ion beam-prepared GaSb substrates: Towards improved surfaces and interfaces,” Journal of Crystal Growth, 310, 1619-1626 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.225

Y.H. Kim, Y.K. Noh, M.D. Kim, J.E. Oh, K.S. Chung, “Transmission electron microscopy study of the initial growth stage of GaSb grown on Si (001) substrate by molecular beam epitaxy method,” Thin Solid Films, 518, 2280-2284 (2010). https://doi.org/10.1016/j.tsf.2009.09.120

Y.H. Kim, J.Y. Lee, Y.G. Noh, M.D. Kim, J.E. Oh, “High-resolution transmission electron microscopy study on the growth modes of GaSb islands grown on a semi-insulating GaAs (001) substrate,” Applied Physics Letters, 90, 241915 (2007). https://doi.org/10.1063/1.2747674

R.D. Wiersma, J.A.H. Stotz, O.J. Pitts, C.X. Wang, M.L.W. Thewalt, and S.P. Watkins, “Electrical and optical properties of carbon-doped GaSb,” Physical Review B, 67, 165202 (2003). https://doi.org/10.1103/PhysRevB.67.165202

M.R. Kitchin, J.P. Hagon, and M. Jaros, “Models of GaSb/InAs type-II infrared detectors at very long wavelengths: band offsets and interface bonds,” Semiconductor Science and Technology, 18, 225-233 (2003). https://doi.org/10.1088/0268-1242/18/4/306

R. Hao, S. Deng, L. Shen, P. Yang, J. Tu, H. Liao, Y. Xu, and Z. Niu, “Molecular beam epitaxy of GaSb on GaAs substrates with AlSb/GaSb compound buffer layers,” Thin Solid Films, 519, 228-230 (2010). https://doi.org/10.1016/j.tsf.2010.08.001

R. Pathak, U. Dadwal, and R. Singh, “Study of hydrogen implantation-induced blistering in GaSb for potential layer transfer applications,” Journal of Physics D: Applied Physics, 50, 285301 (2017). https://doi.org/10.1088/1361-6463/aa7522

M.A. Kamarudin, M. Hayne, Q.D. Zhuang, O. Kolosov, T. Nuytten, V.V. Moshchalkov, and F. Dinelli, “GaSb quantum dot morphology for different growth temperatures and the dissolution effect of the GaAs capping layer,” Journal of physics D: Applied physics, 43, 065402 (2010). http://iopscience.iop.org/0022-3727/43/6/065402

M. Tornberg, E.K. Mårtensson, R.R. Zamani, S. Lehmann, K.A. Dick, and S.G. Ghalamestani, “Demonstration of Sn-seeded GaSb homoand GaAs–GaSb heterostructural nanowires,” Nanotechnology, 27, 175602 (2016). https://doi.org/10.1088/0957-4484/27/17/175602

M.K. Bakhadyrkhanov, Kh.M. Iliev, K.S. Ayupov, B.A. Abdurakhmonov, P.Yu. Krivenko, and R.L. Kholmukhamedov, “Self-Organization of Nickel Atoms in Silicon,” Inorganic Materials, 47(9), 962-964 (2011). https://doi.org/10.1134/S0020168511090020

S.G. Konnikov, T.B. Popova, S.A. Ruvimov, M.M. Sobolev, L.M. Sorokow, I.L. Shulpina, V.E. Umanse, “The Influence of Lattice Mismatch upon Defects Generation and Luminescent Characteristics of Heterostructures in the Gap-InP System,” Crystal Research and Technology, 16(2), 169-174 (1981). https://doi.org/10.1002/CRAT.19810160209

M.R. Calvo, J.-B. Rodriguez, L. Cerutti, M. Ramonda, G. Patriarche, and E. Tournié, “Molecular-beam epitaxy of GaSb on 6-offcut (0 0 1) Si using a GaAs nucleation layer,” Journal of Crystal Growth, 529, 125299 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125299

I. Lucci, S. Charbonnier, L. Pedesseau, M. Vallet, L. Cerutti, J.-B. Rodriguez, E. Tournié, et al., “Universal description of III-V/Si epitaxial growth processes,” Physical review materials, 2, 06040 (2018). https://doi.org/10.1103/PhysRevMaterials.2.060401

A. Ponchet, G. Patriarche, J. B. Rodriguez, L. Cerutti, and E. Tournie, “Interface energy analysis of III–V islands on Si (001) in the Volmer-Weber growth mode,” Applied Physics Letters, 113, 191601(2018). https://doi.org/10.1063/1.5055056

H. Aharoni, “Measurement of the lattice constant of Si-Ge heteroepitaxial layers grown on a silicon substrate,” Vacuum, 28(12), 571-578 (1978). https://doi.org/10.1016/0042-207X(78)90014-3

A. Sasaki, M. Nishiuma, and Y. Takeda, “Energy Band Structure and Lattice Constant Chart of III-V Mixed Semiconductors, and AlGaSb/AlGaAsSb Semiconductor Lasers on GaSb Substrates,” Japanese Journal of Applied Physics, 19(9), 1695-1702 (1980). https://doi.org/10.1143/JJAP.19.1695

Y. Meng, G. Liu, A. Liu, H. Song, Y. Hou, B. Shi, and F. Shan, “Low-temperature fabrication of high-performance indium oxide thin film transistors,” The Royal Society of Chemistry. RSC Adv. 2015(5), 37807-37813 (2015). https://doi.org/10.1039/c5ra04145g

Y.K. Su, K.J. Gan, J.S. Hwang, and S.L. Tyan, “Raman spectra of Si-implanted GaSb,” J. Appl. Phys. 68, 5584-5587 (1990). https://doi.org/10.1063/1.346994

S.G. Kim, H. Asahi, M. Seta, J. Takizawa, S. Emura, R.K. Soni, and S. Gonda, and H. Tanoue, “Raman scattering study of the recovery process in Ga ion implanted GaSb,” Journal of Applied Physics, 74, 579-585 (1993). https://doi.org/10.1063/1.355270

T. Toda, Y. Jinbo, and N. Uchitomi, “Structural and optical characterization of GaSb layers on Si (001) substrates,” Phys. Stat. Sol. (c) 3(8), 2693-2696 (2006). https://doi.org/10.1002/pssc.200669553

How to Cite
Iliyev, X. M., Odzhaev, V. B., Isamov, S. B., Isakov, B. O., Ismaylov, B. K., Ayupov, K. S., Hamrokulov, S. I., & Khasanbaeva, S. O. (2023). X-Ray Diffraction and Raman Spectroscopy Analyses of GaSb-Enriched Si Surface Formed by Applying Diffusion Doping Technique. East European Journal of Physics, (3), 363-369. https://doi.org/10.26565/2312-4334-2023-3-38