Semi-Empirical Investigation of Electronic, Vibrational and Thermodynamic Properties of Perylene Molecule (C20H12)
Abstract
This work investigates computationally the spectroscopic and thermodynamics properties of the perylene molecule (C20H12) in the gas phase by utilizing a semi-empirical method [Hyper Chem8.0 and WinMopac7.0] programs, via (MNDO-PM3). This method is providing more simplicity and quick performance. The electronic properties such as total energy, dissociation energy, molecular orbital, ionization potentials, electronic affinity, and energy gap were calculated. However, vibration analysis and UV-visible spectra have been calculated. Moreover, the thermodynamic properties at the standard temperature such as heat of formation, entropy, enthalpy, heat capacity, and Gibbs free energy were calculated.
Downloads
References
M. Zhu, and C. Yang, Chem. Soc. Rev. 42, 4963–4976 (2013). https://doi.org/10.1039/C3CS35440G
L. Dou, Y. Liu, Z. Hong, G. Li, and Y. Yang, Chemical Reviews, 115, 12633–12665 (2015). https://doi.org/10.1021/acs.chemrev.5b00165
Y. Yao, H. Dong, and W. Hu, Advanced Materials, 28, 4513–4523 (2016). https://doi.org/https://doi.org/10.1002/adma.201503007
H. Bronstein, C.B. Nielsen, B.C. Schroeder, and I. McCulloch, Nature Reviews Chemistry, 4, 66–77 (2020). https://doi.org/10.1038/s41570-019-0152-9
M. Fröbel, F. Fries, T. Schwab, S. Lenk, K. Leo, M.C. Gather, and S. Reineke, Scientific Reports, 8, 9684 (2018). https://doi.org/10.1038/s41598-018-27976-z
D.-H. Kim, A. D’Aléo, X.-K. Chen, A. D. S. Sandanayaka, D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya, E. Choi, J. W. Wu, F. Fages, J.-L. Brédas, J.-C. Ribierre, and C. Adachi, Nature Photonics, 12, 98–104 (2018). https://doi.org/10.1038/s41566-017-0087-y
K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, and Y. Chi, Nature Photonics, 11, 63–68 (2017). https://doi.org/10.1038/nphoton.2016.230
D. Baran, N. Gasparini, A. Wadsworth, C. H. Tan, N. Wehbe, X. Song, Z. Hamid, W. Zhang, M. Neophytou, T. Kirchartz, C.J. Brabec, J.R. Durrant, and I. McCulloch, Nature Communications, 9, 2059 (2018). https://doi.org/10.1038/s41467-018-04502-3
M. Ameri, M. Ghaffarkani, R. T. Ghahrizjani, N. Safari, and E. Mohajerani, Solar Energy Materials and Solar Cells, 205, 110251 (2020). https://doi.org/https://doi.org/10.1016/j.solmat.2019.110251
W. Tang, Y. Huang, L. Han, R. Liu, Y. Su, X. Guo, and F. Yan, Journal of Materials Chemistry C, 7, 790–808 (2019). https://doi.org/10.1039/C8TC05485A
Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, Light: Science and Applications, 9, 105 (2020). https://doi.org/10.1038/s41377-020-0341-9
T. Okamoto, C. P. Yu, C. Mitsui, M. Yamagishi, H. Ishii, and J. Takeya, Journal of the American Chemical Society, 142, 9083 9096 (2020). https://doi.org/https://doi.org/10.1021/jacs.9b10450
J. Sun, Y. Choi, Y. J. Choi, S. Kim, J.-H. Park, S. Lee, and J. H. Cho, Advanced Materials, 31, 1803831 (2019). https://doi.org/https://doi.org/10.1002/adma.201803831
M. Duan, L. Jiang, B. Shao, C. Feng, H. Yu, H. Guo, H. Chen, and W. Tang, Applied Catalysis B: Environmental, 297, 120439 (2021). https://doi.org/10.1016/j.apcatb.2021.120439
R. Roccanova, A. Yangui, H. Nhalil, H. Shi, M.-H. Du, and B. Saparov, ACS Applied Electronic Materials, 1, 269–274 (2019). https://doi.org/10.1021/acsaelm.9b00015
J. Tao, D. Liu, J. Jing, H. Dong, L. Liu, B. Xu, and W. Tian, Advanced Materials, 33, 2105466 (2021). https://doi.org/10.1002/adma.202105466
J. D. Yuen, V. A. Pozdin, A. T. Young, B. L. Turner, I. D. Giles, J. Naciri, S. A. Trammell, P. T. Charles, D. A. Stenger, and M. A. Daniele, Dyes and Pigments, 174, 108014 (2020). https://doi.org/10.1016/j.dyepig.2019.108014
A. G. Macedo, L. P. Christopholi, A. E. X. Gavim, J. F. de Deus, M. A. M. Teridi, A. R. bin M. Yusoff, and W. J. da Silva, Journal of Materials Science: Materials in Electronics, 30, 15803–15824 (2019). https://doi.org/10.1007/s10854-019-02019-z
M. Zhang, J. Shi, C. Liao, Q. Tian, C. Wang, S. Chen, and L. Zang, Chemosensors, 9, 1 (2020). https://doi.org/10.3390/chemosensors9010001
É. Torres, M. N. Berberan-Santos, and M. J. Brites, Dyes and Pigments, 112, 298–304 (2015). https://doi.org/10.1016/j.dyepig.2014.07.019
M. Zhang, Y. Bai, C. Sun, L. Xue, H. Wang, and Z.-G. Zhang, Science China Chemistry, 65, 462–485 (2022). https://doi.org/10.1007/s11426-021-1171-4
K. Nie, X. Peng, W. Yan, J. Song, and J. Qu, Journal of Bio-X Research, 3, 174–182 (2020). https://doi.org/10.1097/JBR.0000000000000081
A. Sugie, W. Han, N. Shioya, T. Hasegawa, and H. Yoshida, The Journal of Physical Chemistry C, 124, 9765–9773 (2020). https://doi.org/10.1021/acs.jpcc.0c01743
P. Bultinck, T. Kuppens, X. Gironés, and R. Carbó-Dorca, Journal of Chemical Information and Computer Sciences, 43, 1143–1150 (2003). https://doi.org/10.1021/ci0340153
G. Halder, Introduction to chemical engineering thermodynamics, 2nd ed (PHI Learning Pvt. Ltd., 2014).
B. Schrader, ed., Infrared and Raman spectroscopy: methods and applications (John Wiley & Sons, 2008).
S. Aronson, B. Strumeyer, and R. Goodman, The Journal of Physical Chemistry, 76, 921–925 (1972). https://doi.org/10.1021/j100650a024
J. I. Gersten and F. W. Smith, The physics and chemistry of materials (Toronto: Wiley New York, 2001).
C.-G. Zhan, J. A. Nichols, and D. A. Dixon, The Journal of Physical Chemistry A, 107, 4184–4195 (2003). https://doi.org/10.1021/jp0225774
Siyamak Shahab and Masoome Sheikhi, Russian Journal of Physical Chemistry B, 14, 15–18 (2020). https://doi.org/https://doi.org/10.1134/S1990793120010145
W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction, 10th ed (New York: Wiley, 2018).
J. Bouwman, P. Castellanos, M. Bulak, J. Terwisscha van Scheltinga, J. Cami, H. Linnartz, and A. G. G. M. Tielens, Astronomy and Astrophysics, 621, A80 (2019). https://doi.org/https://doi.org/10.1051/0004-6361/201834130
R. M. Kubba, M. U. Al-Dilemy, and M. Shanshal, National Journal of Chemistry, 38, 293–310 (2010).
J. M. Dixon, M. Taniguchi, and J. S. Lindsey, Photochemistry and Photobiology, 81, 212–213 (2007). https://doi.org/10.1111/j.1751-1097.2005.tb01544.x
G. Blanquart and H. Pitsch, The Journal of Physical Chemistry A, 111, 6510–6520 (2007). https://doi.org/10.1021/jp068579w
Copyright (c) 2023 Abdul Hakim Sh. Mohammed, Issa Z. Hassan, Hassan A. Kadhem, Rosure Borhanalden Abdulrahman
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).