Study the Effect of Hydrofluoric (HF) Concentration on the Topography of the Porous Silicon Layer Prepared by Sunlight Photochemical Etching (SLPCE)
Abstract
Silicon nanocrystals have a vast range of potential applications, from improving the efficiency of solar cells and optoelectronic devices to biomedical imaging and drug delivery, wastewater treatment, and antibacterial activities. In this study a photochemical etching technique was used to create layers of porous silicon on a donor silicon wafer with orientation (111) and resistivity equal to 1‑10 ohm·cm. The process involved focusing sunlight onto the samples using a telephoto lens with a suitable focal length of 30cm and a diameter of 90 mm, which provided sufficient energy to complete the chemical etching. By using a constant etching time of 60 minutes and different concentrations of hydrofluoric acid (ranging from 25% to 40%), layers with varying properties were obtained. The resulting surfaces were studied using the atomic force microscope (AFM), revealing the formation of different nanostructures and particles with varying shapes, sizes, and thicknesses depending on the preparation conditions. The average size of the particles was found to be 90.43nm at a concentration of 40% acid, while decreasing to 48.7nm at a concentration of 25% HF acid.
Downloads
References
Z. Ni, S. Zhou, S. Zhao, W. Peng, D. Yang, X. Pi, “Silicon nanocrystals: unfading silicon materials for optoelectronics,” Mater. Sci. Eng. Reports, 138, 85-117 (2019). https://doi.org/10.1016/j.mser.2019.06.001
R.B. Abdulrahman, A.S. Alagoz, T. Karabacak, “Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator,” MRS Proc. 1566, mrss13-1566-ii09-06 (2013). https://doi.org/10.1557/opl.2013.878
M.B. Gongalsky, N.V Pervushin, D.E. Maksutova, U.A. Tsurikova, P.P. Putintsev, O.D. Gyuppenen, Y.V Evstratova, O.A. Shalygina, G.S. Kopeina, A.A. Kudryavtsev, B. Zhivotovsky, L.A. Osminkina, “Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles,” Nanomaterials, 11, (2021) 2167. https://doi.org/10.3390/nano11092167
S.H. Anastasiadis, K. Chrissopoulou, E. Stratakis, P. Kavatzikidou, G. Kaklamani, A. Ranella, “How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review,” Nanomaterials, 12, 552 (2022). https://doi.org/10.3390/nano12030552
M.S. Abo Ghazala, H.A. Othman, L.M. Sharaf El-Deen, M.A. Nawwar, A.E.B. Kashyout, “Fabrication of Nanocrystalline Silicon Thin Films Utilized for Optoelectronic Devices Prepared by Thermal Vacuum Evaporation,” ACS Omega, 5, 27633-27644 (2020). https://doi.org/10.1021/acsomega.0c04206
Y. Li, Y. Wang, L. Yin, W. Huang, W. Peng, Y. Zhu, K. Wang, D. Yang, and X. Pi, “Silicon-based inorganic-organic hybrid optoelectronic synaptic devices simulating cross-modal learning,” Sci. China Inf. Sci. 64, 162401 (2021). https://doi.org/10.1007/s11432-020-3035-8
I.K. Jassim, and A.Y. Khudair, “Preparation of porous silicon Wafers using sun light photo chemical etching (SLPCE),” Tikrit J. Pure Sci. 23, 78–84 (2018).
Y. An, Y. Tian, C. Wei, Y. Zhang, S. Xiong, J. Feng, and Y. Qian, “Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion,” Energy Storage Mater. 32, 115-150 (2020). https://doi.org/10.1016/j.ensm.2020.07.006
L.C. Loaiza, L. Monconduit, and V. Seznec, “Si and Ge‐Based Anode Materials for Li‐, Na‐, and K‐Ion Batteries: A Perspective from Structure to Electrochemical Mechanism,” Small, 16, 1905260 (2020). https://doi.org/10.1002/smll.201905260
F. Kunze, S. Kuns, M. Spree, T. Hülser, C. Schulz, H. Wiggers, and S.M. Schnurre, “Synthesis of silicon nanoparticles in a pilot-plant-scale microwave plasma reactor: Impact of flow rates and precursor concentration on the nanoparticle size and aggregation,” Powder Technol. 342, 880-886 (2019). https://doi.org/10.1016/j.powtec.2018.10.042
S.D. Karande, S.A. Jadhav, H.B. Garud, V.A. Kalantre, S.H. Burungale, and P.S. Patil, “Green and sustainable synthesis of silica nanoparticles,” Nanotechnol. Environ. Eng. 6, 29 (2021). https://doi.org/10.1007/s41204-021-00124-1
T. Sun, D. Li, J. Chen, Y. Wang, J. Han, T. Zhu, W. Li, J. Xu, and K. Chen, “Enhanced Electroluminescence from a Silicon Nanocrystal/Silicon Carbide Multilayer Light-Emitting Diode,” Nanomaterials, 13, 1109 (2023). https://doi.org/10.3390/nano13061109
A. Fronya, S. Antonenko, N. Karpov, N. Pokryshkin, A. Eremina, A. Kharin, V.G. Yakunin, et al., Pulsed laser deposition in He N2 gaseous mixtures for the synthesis of photoluminescent Si and Ge nanoparticles for bioimaging,” in: Nanoscale Quantum Mater. From Synth. Laser Process. to Appl. SPIE, (2023), p. 32. https://doi.org/10.1117/12.2655137
M. Martínez-Carmona, and M. Vallet-Regí, “Advances in Laser Ablation Synthesized Silicon-Based Nanomaterials for the Prevention of Bacterial Infection,” Nanomaterials, 10, 1443 (2020). https://doi.org/10.3390/nano10081443
L.J. Richter, U. Ross, M. Seibt, and J. Ihlemann, “Excimer Laser Surface Patterning for Photoluminescence Enhancement of Silicon Nanocrystals, Photonics,” 10, 358 (2023). https://doi.org/10.3390/photonics10040358
S. Dutta, S. Chatterjee, K. Mallem, Y.H. Cho, and J. Yi, “Control of size and distribution of silicon quantum dots in silicon dielectrics for solar cell application: A review,” Renew. Energy, 144, 2-14 (2019). https://doi.org/10.1016/j.renene.2018.06.078
M.F. Abdullah, and R.B. Abdulrahman, “The Electrical and Optical properties of Copper Oxide Nanostructures fabricated by Hot Deionized Water Copper Treatment,” Eurasian J. Physics, Chemistry Math. 9, 45-53 (2022). https://geniusjournals.org/index.php/ejpcm/article/view/2098
M. Zacharias, and P.C. Kelires, “Temperature dependence of the optical properties of silicon nanocrystals,” Phys. Rev. B, 101, 245122 (2020). https://doi.org/10.1103/PhysRevB.101.245122
M. Bürkle, M. Lozac’h, C. McDonald, M. Macias‐Montero, B. Alessi, D. Mariotti, V. Švrček, “Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystals,” Adv. Funct. Mater. 30, 1907210 (2020). https://doi.org/10.1002/adfm.201907210
C. Samanta, S. Bhattacharya, A.K. Raychaudhuri, and B. Ghosh, “Broadband (Ultraviolet to Near-Infrared) Photodetector Fabricated in n-ZnO/p-Si Nanowires Core–Shell Arrays with Ligand-Free Plasmonic Au Nanoparticles,” J. Phys. Chem. C, 124, 22235 22243 (2020). https://doi.org/10.1021/acs.jpcc.0c06080
K.E. González-Flores, J.L. Frieiro, P. Horley, S.A. Pérez-García, L. Palacios-Huerta, M. Moreno, J. López-Vidrier, S. Hernández, B. Garrido, A. Morales-Sánchez, Ultraviolet, visible and near infrared photoresponse of SiO2/Si/SiO2 multilayer system into a MOS capacitor, Mater. Sci. Semicond. Process. 134 (2021) 106009. https://doi.org/10.1016/j.mssp.2021.106009
M. alsaalihiu, G. Al Nuaimi, Study of Electrical Properties of Silver Nanoparticles on Porous Silicon, J. Educ. Sci. 30 (2021) 28–36. https://doi.org/10.33899/edusj.2021.129664.1147
M. Otsuka, Y. Kurokawa, Y. Ding, F.B. Juangsa, S. Shibata, T. Kato, T. Nozaki, Silicon nanocrystal hybrid photovoltaic devices for indoor light energy harvesting, RSC Adv. 10 (2020) 12611–12618. https://doi.org/10.1039/D0RA00804D
Ghosh, Shirahata, All-Inorganic Red-Light Emitting Diodes Based on Silicon Quantum Dots, Crystals. 9 (2019) 385. https://doi.org/10.3390/cryst9080385
J. Li, J.-Y. Yang, J.-T. Wang, S.-G. Lu, A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries, Rare Met. 38 (2019) 199–205. https://doi.org/10.1007/s12598-017-0936-3
C.J.T. Robidillo, J.G.C. Veinot, Functional Bio-inorganic Hybrids from Silicon Quantum Dots and Biological Molecules, ACS Appl. Mater. Interfaces. 12 (2020) 52251–52270. https://doi.org/10.1021/acsami.0c14199
C.G. França, T. Plaza, N. Naveas, M.H. Andrade Santana, M. Manso-Silván, G. Recio, J. Hernandez-Montelongo, Nanoporous silicon microparticles embedded into oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for enhanced controlled drug delivery, Microporous Mesoporous Mater. 310 (2021) 110634. https://doi.org/10.1016/j.micromeso.2020.110634
C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, V.H. Guerrero, Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods, Environ. Technol. Innov. 22 (2021) 101504. https://doi.org/10.1016/j.eti.2021.101504
A. Nastulyavichus, S. Kudryashov, N. Smirnov, I. Saraeva, A. Rudenko, E. Tolordava, A. Ionin, Y. Romanova, D. Zayarny, Antibacterial coatings of Se and Si nanoparticles, Appl. Surf. Sci. 469 (2019) 220–225. https://doi.org/10.1016/j.apsusc.2018.11.011
Q. Wang, G. Yuan, S. Zhao, W. Liu, Z. Liu, J. Wang, J. Li, Metal-assisted photochemical etching of GaN nanowires: The role of metal distribution, Electrochem. Commun. 103 (2019) 66–71. https://doi.org/10.1016/j.elecom.2019.05.005
A.-R.N. Abed, F.A. Khammas, R.N. Abed, Improvement the efficiency of the solar cells using nanosizing process (photochemical etching), in: AIP Conf. Proc., American Institute of Physics, 2020: p. 020109. https://doi.org/10.1063/5.0000315
A.K.K. Soopy, Z. Li, T. Tang, J. Sun, B. Xu, C. Zhao, A. Najar, In(Ga)N Nanostructures and Devices Grown by Molecular Beam Epitaxy and Metal-Assisted Photochemical Etching, Nanomaterials. 11 (2021) 126. https://doi.org/10.3390/nano11010126
Y. Xing, Z. Guo, M.A. Gosálvez, G. Wu, X. Qiu, Characterization of anisotropic wet etching of single-crystal sapphire, Sensors Actuators A Phys. 303 (2020) 111667. https://doi.org/10.1016/j.sna.2019.111667
T.S. Wilhelm, I.L. Kecskes, M.A. Baboli, A. Abrand, M.S. Pierce, B.J. Landi, I. Puchades, P.K. Mohseni, Ordered Si Micropillar Arrays via Carbon-Nanotube-Assisted Chemical Etching for Applications Requiring Nonreflective Embedded Contacts, ACS Appl. Nano Mater. 2 (2019) 7819–7826. https://doi.org/10.1021/acsanm.9b01838
Z. Shao, Y. Wu, S. Wang, C. Zhang, Z. Sun, M. Yan, Y. Shang, E. Song, Z. Liu, All-sapphire-based fiber-optic pressure sensor for high-temperature applications based on wet etching, Opt. Express. 29 (2021) 4139. https://doi.org/10.1364/OE.417246
M.H. Kareem, A.M. Abdul Hussein, H.T. Hussein, Effect of current density on the porous silicon preparation as gas sensors **, J. Mech. Behav. Mater. 30 (2021) 257–264. https://doi.org/10.1515/jmbm-2021-0027
X. Zhang, Y. Liu, C. Yao, J. Niu, H. Li, C. Xie, Facile and stable fabrication of wafer-scale, ultra-black c -silicon with 3D nano/micro hybrid structures for solar cells, Nanoscale Adv. 5 (2023) 142–152. https://doi.org/10.1039/D2NA00637E
D. Gräf, M. Grundner, R. Schulz, Reaction of water with hydrofluoric acid treated silicon(111) and (100) surfaces, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 7 (1989) 808–813. https://doi.org/10.1116/1.575845
A.M.E. Ibrahim, H.A. Kadhem, Study the effect resistivity slide and the time of etching on silicon surfaces morphology of producing photovoltaic method, Tikrit J. Pure Sci. 21 (2016) 152–161.
O. V Sukhova, V.A. Polonskyy, Peculiarities in the Structure Formation and Corrosion of Quasicrystalline Al65Co20Cu15 Alloy in Neutral and Acidic Media, East Eur. J. Phys. (2021) 49–54. https://doi.org/10.26565/2312-4334-2021-3-07
Tae Hun Kim, Hyuck In Kwon, Jong Duk Lee, Byung-Gook Park, Thickness measurements of ultra-thin films using AFM, in: Dig. Pap. Microprocess. Nanotechnol. 2001. 2001 Int. Microprocess. Nanotechnol. Conf. (IEEE Cat. No.01EX468), Japan Soc. Appl. Phys, 2001: pp. 240–241. https://doi.org/10.1109/IMNC.2001.984179
A. Rehman, M.A. Ehsan, A. Afzal, A. Ali, N. Iqbal, Aerosol-assisted nanostructuring of nickel/cobalt oxide thin films for viable electrochemical hydrazine sensing, Analyst. 146 (2021) 3317–3327. https://doi.org/10.1039/D1AN00222H
Copyright (c) 2023 Hassan A. Kadhem, Abdul Hakim Sh. Mohammed, Issa Z Hassan, Rosure Borhanalden Abdulrahman
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).