Comparison of Numerically Simulated and Measured Dose Rates for Gamma-Irradiation Facility

Keywords: absorbed dose, dose rate, numerical simulation, ECB

Abstract

The article provides a description of steps which were made to make comparison between numerically simulated and measured dose rates in Izotop gamma-irradiation facility (Budapest, Hungary) Numerical simulation was carried out with the help of software toolkit GEANT4. Dose measurement were made by ethanol-chlorobenzene (ECB) dosimeters. The comparison shows a good agreement between simulated and measured values. Worst accuracy was 17.08%.

Downloads

Download data is not yet available.

References

} B. P. Fairand, Radiation Sterilization for Health Care Products: X-Ray, Gamma, and Electron Beam (CRC Press, Boca Raton, Apr. 2014),https://doi.org/10.1201/9781482286205.

S. N. Hajare, Radiation technology for preservation and hygienization of food and agricultural commodities, INIS Reference Number: 48066274 (Sinhgad Institutes, India, 2017).

A. G. Chmielewski, en, Radiation Physics and Chemistry, Proceedings of the 11th Tihany Symposium on Radiation Chemistry 76, 1480–1484 (2007), https://doi.org/10.1016/j.radphyschem.2007.02.056.

S. I. Borrely, A. C. Cruz, N. L. Del Mastro, M. H. O. Sampa, and E. S. Somessari, en, Progress in Nuclear Energy, Reviews from the X ENFIR/III ENAN Brazilian Joint Nuclear Conference 33, 3–21 (1998), https://doi.org/10.1016/S0149-1970(97)87287-3.

M. R. Cleland, L. A. Parks, and S. Cheng, en, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Ionizing Radiation and Polymers 208, 66–73 (2003), https://doi.org/10.1016/S0168-583X(03)00655-4.

L. Cortella, C. Albino, Q.-K. Tran, and K. Froment, en, Radiation Physics and Chemistry 171, 108726 (2020), https://doi.org/10.1016/j.radphyschem.2020.108726.

P. Andreo, D. T. Burns, A. E. Nahum, J. Seuntjens, and F. H. Attix, Fundamentals of Ionizing Radiation Dosimetry, en (John Wiley & Sons, Aug. 2017).

S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, and et al, en, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250–303 (2003), https://doi.org/10.1016/S0168-9002(03)01368-8.

J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai, G. Barrand, and et al, IEEE Transactions on Nuclear Science 53, 270–278 (2006), https://doi.org/10.1109/TNS.2006.869826.

J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, and et al, en, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 835, 186–225 (2016), https://doi.org/10.1016/j.nima.2016.06.125.

Institute of Isotopes Ltd., Budapest, Gamma irradiation facility, https://www.iki.kfki.hu/radsec/irradfac/pub/Gamma_Irradiation_Facility.pdf (visited on 04/20/2022).

International Organization for Standardization, ISO/ASTM 51538:2009 Practice for use of the ethanol-chlorobenzene dosimetry system, Standard (International Organization for Standardization, Geneva, CH, Feb. 2009).

A. Kovacs, V. Stenger, G. Foeldiak, and L. Legeza, in High-dose dosimetry (1985).

A. Kov´acs, I. Slezsak, W. L. McLaughlin, and A. Miller, Radiation Physics and Chemistry 46, 1211–1215 (1995).

Published
2022-06-02
Cited
How to Cite
Morgunov, V., Madar, I., Lytovchenko, S., Chyshkala, V., & Mazilin, B. (2022). Comparison of Numerically Simulated and Measured Dose Rates for Gamma-Irradiation Facility. East European Journal of Physics, (2), 118-123. https://doi.org/10.26565/2312-4334-2022-2-15

Most read articles by the same author(s)