Vitrification of a Simulator of Vat Residues from Liquid Radioactive Waste

Keywords: liquid radioactive waste, vat residue, vitrification, strength, leaching rate


The study on the posibility of the use of the optimal glass compositions for vitrification of an imitator of vat residues of liquid radioactive waste from nuclear power plants with VVER-1000 reactors was carried out. The main process parameters such as vitrification temperature, strength, corrosion resistance, absence of crystalline phases, minimization of glass-forming additives and inclusion the maximum amount of waste were analyzed. It has been established that the melting temperature of lead-borosilicate glass matrices was 1150 °C, which satisfies the requirements for vitrification of low- and medium-level waste. The ultimate compressive strength of the obtained samples of glass matrices was 136.0 MPa. In addition, it has been shown that lead-borosilicate glass matrices are the most resistant to leaching. The cesium leaching rate was 1.5·10-5 g/cm2·day.


Download data is not yet available.


S.Y. Sayenko, V. Shkuropatenko, A. Pylypenko, A. Zykova, S. Karsim, V. Andrieieva, and S. Moshta, PAST, 2, 103–113 (2020),

Y.O. Olkhovyk, and P.O. Korchagin, Ядерна енергетика та довкілля [Nuclear energy and environment], 1, 20-23 (2014), (in Ukrainian)

B.G. Ershov, T.K. Yurik, G.L. Bykov, A.V. Gordeev, P.V. Kozlov, O.M. Slyunchev, and Yu.V. Glagolenko, Вопросы радиационной безопасности [Radiation Safety Issues], 1, 3 (2008), (in Russian)

L. Shanggen, J. Sheng, and B. Tang, 298, 180-183 (2001).

N.P. Laverov, B.I. Omel’yanenko, S.V. Yudintsev, S. V. Yudintsev, and S.V. Stefanovsky, Geol. Ore Deposits, 54, 1–16 (2012).

N.P. Laverov, B.I. Omel’yanenko, S.V. Yudintsev, S.V. Stefanovsky, and B.S. Nikonov, Geol. Ore Deposits, 55, 71–95 (2013).

I. Sobolev, M. Ojovan, T. Scherbatova, O. Batuhnova, Стекло для радиоактивных отходов [Glasses for radioactive waste]. (Energoatomizdat, Moscow, 1999). (in Russian)

M. Ojovan, and P. Poluektov, Безопасность Окружающей Среды [Environmental Safety], 1, 112-115 (2010).

D.J. Backhouse, A.J. Fisher, J.J. Neeway, C.L. Corkhill, N.C. Hyatt, and R.J. Hand, npj Mater. Degrad. 2, 1-10 (2018).

P.A. Bingham, N.C. Hyatt, and R.J. Hand, Glass Technology: European Journal of Glass Science and Technology, Part A, 53(3), 83-100 (2012).

S. Gin, P. Jollivet, M. Tribet, S. Peuget, and S. Schuller, Radiochim. Acta, 105(11), 927-959 (2017).

J.S. McCloy, and S. Schuller, Comptes Rendus. Géoscience, 354, 121-160 (2022).

J. Shenga, K. Choi, and M. JaeSong, Journal of Nuclear Materials, 297(1), 7-13 (2001).

K. Sawada, Y. Enokida, and T. Tsukada, Journal of Nuclear Science and Technology, 57(6), 671-677 (2020).

N. Krylova, and P. Poluektov, Атомная энергия [Atomic Energy], 78(2), 93-98 (1995). (in Russian)

S. Stefanovskii, Физика и химия стекла [Physics and chemistry of glass], 16 (5), 818-826 (1990). (in Russian)

U. Olihovik, Ядерна і радіаційна безпека [Nuclear and radiation safety], 4(64), 46-50 (2014). (in Ukrainian)

B. Kudriavcev, U. Korchagin, and A. Reznik, Patent RU2226726C2 (2004). (in Russian)

A. Nikiforov, V. Kulichenko, and M. Jiharev, Обезвреживание жидких радиоактивных отходов [Neutralization of liquid radioactive waste], (Energoatomizdat, Moscow, 1985). (in Russian)

O. Karlina, N. Iliina, A. Ovchinnikov, and M. Ojovan, Patent RU2065215C1 (1996).

P.A. Bingham, A.J. Connelly, R.J. Hand, N.C. Hyatt, and P.A. Northrup, Glass Technol.: Eur. J. Glass Sci. Technol. A, 50(3), 135–138 (2009).

S. Stefanovskii, A. Minaev, and F. Lifanov, Радиохимия [Radiochemistry], 32(3), 162-166 (1990). (in Russian)

Dj. Geodokyan, and S. Stepanyan, Физика и химия стекла [Physics and chemistry of glass], 5, 622-635 (1982). (in Russian)

Отходы высокоактивные отвержденные. Общие технические требования [Highly active solidified waste. General technical requirements], GOST R 50926-96. (Gosstandart Rossii, Moscow, 1996).

M. Skvorcov, N. Mihailenko, and S. Stefanovskii, Успехи в химии и химической технологии [Advances in chemistry and chemical technology], XXXI(3), 108-110 (2017), (in Russian)

I. Levickii, L. Papko, and M. Dyadenko, Химия и технология неорганических материалов и веществ [Chemistry and technology of inorganic materials and substances], 3, 3-8 (2015). (in Russian)

S. Stefanovskii, I. Ivanov, A. Gulin, and F. Lifanov, Радиохимия [Radiochemistry], 3, 106-109 (1993). (in Russian)

I. Sobolev, S. Dmitriev, F. Lifanov, A. Kobelev, S. Stefanovsky, and M. Ojovan, Glass Technology, 46(1), 28–35 (2005).

V. Morgunov, S. Sayenko, V. Shkuropatenko, Y. Svitlychnyi, O. Bereznyak, S. Lytovchenko, and V. Chyshkala, “Calculation of the Absorbed Dose by a Borosilicate Glass Matrix and its simulated irradiation”, East Eur. J. Phys. 3, 121 (2022).

How to Cite
Sayenko, S., Shkuropatenko, V., Svitlychnyi, Y., Zykova, A., Karsim, S., Kutnii, D., & Morgunov, V. (2023). Vitrification of a Simulator of Vat Residues from Liquid Radioactive Waste. East European Journal of Physics, (1), 94-101.

Most read articles by the same author(s)