Comparison of Anatase and Rutile for Photocatalytic Application: the Short Review

Keywords: photocatalysis, dioxide titanium, anatase, rutile, band gap, photoefficiency, electron-hole generation

Abstract

The dioxide titanium (TiO2) is attracting a great attention as semiconductor photocatalyst because of its high photoreactivity, non-toxicity, corrosion resistance, photostability, cheapness. It can be used in wide range of applications: air and water purification, hydrogen (H2) generation, CO2 reduction, in photovoltaic application and others. The efforts of scientists were applied to use solar light for dioxide titanium photocatalysis and to enhance the photocatalytic efficiency. In this article we review the properties difference of anatase and rutile modifications of TiO2. The anatase has a higher photoefficiency. The higher photoefficiency of anatase is due to longer lifetime of charge carriers (lifetime of e-/h+ in anatase on 3 order higher than in rutile). But anatase has higher band gap energy (3.2 eV or 388 nm) in comparison with rutile (3.0 eV or 414 nm). Thus, anatase becomes photosensitive in ultraviolet (UV) diapason of light, meanwhile rutile - in violet spectrum of visible light. It is desirable to obtain TiO2 semiconductor with properties combining best ones from anatase and rutile: higher photoreactivity and smaller band gap. It can be made by using external factors such as electric or magnetic fields, doping and etc.

Downloads

Download data is not yet available.

References

A. Fujishima and K. Honda, Nature 238, 37–38 (1972), https://doi.org/10.1038/238037a0.

T. Ochiai and A. Fujishima, Journal of Photochemistry and photobiology C: Photochemistry reviews 13, 247–262 (2012), https://doi.org/10.1016/j.jphotochemrev.2012.07.001.

F. He, W. Jeon, and W. Choi, Nature Communications 12, 1–4 (2021), https://doi.org/10.1038/s41467-021-22839-0.

A Fernandez, G Lassaletta, V. Jimenez, A Justo, A. Gonzalez-Elipe, J.-M. Herrmann, H Tahiri, and Y Ait-Ichou, Applied Catalysis B: Environmental 7, 49–63 (1995), https://doi.org/10.1016/0926-3373(95)00026-7.

K. Nakata, T. Ochiai, T. Murakami, and A. Fujishima, Electrochimica Acta 84, ELECTROCHEMICAL SCIENCE AND TECHNOLOGY State of the Art and Future Perspectives On the occasion of the International Year of Chemistry (2011), 103–111 (2012), https://doi.org/10.1016/j.electacta.2012.03.035.

J. ˆAngelo, L. Andrade, L. M. Madeira, and A. Mendes, en, Journal of Environmental Management 129, 522–539 (2013), https://doi.org/10.1016/j.jenvman.2013.08.006.

O. Ola and M. M. Maroto-Valer, en, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 24, 16–42 (2015), https://doi.org/10.1016/j.jphotochemrev.2015.06.001.

G. Fu, P. S. Vary, and C.-T. Lin, The Journal of Physical Chemistry B 109, 8889–8898 (2005), https://doi.org/10.1021/jp0502196.

Y. Liu, X. Wang, F. Yang, and X. Yang, en, Microporous and Mesoporous Materials 114, 431–439 (2008), https://doi.org/10.1016/j.micromeso.2008.01.032.

U. Joost, K. Juganson, M. Visnapuu, M. Mortimer, A. Kahru, E. N˜ommiste, U. Joost, V. Kisand, and A. Ivask, en, Journal of Photochemistry and Photobiology B: Biology 142, 178–185 (2015), https://doi.org/10.1016/j.jphotobiol.2014.12.010.

A. Kubacka, M. Ferrer, M. L. Cerrada, C. Serrano, M. S´anchez-Chaves, M. Fern´andez-Garc´ıa, A. de Andr´es, R. J. J. Riob´oo, F. Fern´andez-Mart´ın, and M. Fern´andez-Garc´ıa, en, Applied Catalysis B: Environmental 89, 441–447 (2009), https://doi.org/10.1016/j.apcatb.2009.01.002.

S. Sfaelou and P. Lianos, AIMS Mater. Sci. 3, 270–288 (2016).

M. Kaneko, N. Gokan, N. Katakura, Y. Takei, and M. Hoshino, Chem. Commun., 1625–1627 (2005), https://doi.org/10.1039/B418580C.

K. Iyatani, Y. Horiuchi, M. Moriyasu, S. Fukumoto, S.-H. Cho, M. Takeuchi, M. Matsuoka, and M. Anpo, J. Mater. Chem. 22, 10460–10463 (2012), https://doi.org/10.1039/C2JM32064A.

M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, Renewable Sustainable Energy Rev. 11, 401–425 (2007), https://doi.org/10.1016/j.rser.2005.01.009.

V. Kumaravel, S. Mathew, J. Bartlett, and S. C. Pillai, Applied Catalysis B: Environmental 244, 1021–1064 (2019), https://doi.org/10.1016/j.apcatb.2018.11.080.

S. Banerjee, D. D. Dionysiou, and S. C. Pillai, Applied Catalysis B: Environmental 176-177, 396–428 (2015), https://doi.org/10.1016/j.apcatb.2015.03.058.

C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, and C. Thanachayanont, Ceramics International 34, The Fifth Asian Meeting on Electroceramics (AMEC-5), 1067–1071 (2008), https://doi.org/10.1016/j.ceramint.2007.09.043.

A. Folli, C. Pade, T. B. Hansen, T. De Marco, and D. E. Macphee, Cement and Concrete Research 42, 539–548 (2012), https://doi.org/10.1016/j.cemconres.2011.12.001.

C. Garlisi and G. Palmisano, en, Applied Surface Science 420, 83–93 (2017), https://doi.org/10.1016/j.apsusc.2017.05.077.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chemical reviews 114, 9919–9986 (2014), https://doi.org/10.1021/cr5001892.

O. Carp, C. L. Huisman, and A. Reller, en, Progress in Solid State Chemistry 32, 33–177 (2004), https://doi.org/10.1016/j.progsolidstchem.2004.08.001.

M. Yadav, A. Yadav, R. Fernandes, Y. Popat, M. Orlandi, A. Dashora, D. C. Kothari, A. Miotello, B. L. Ahuja, and N. Patelen, Journal of Environmental Management 203, 364–374 (2017), https://doi.org/10.1016/j.jenvman.2017.08.010.

K. Subalakshmi and J. Senthilselvan, en, Solar Energy 171, 914–928 (2018), 10.1016/j.solener.2018.06.077.

M. Diak, E. Grabowska, and A. Zaleska, en, Applied Surface Science 347, 275–285 (2015), https://10.1016/j.apsusc.2015.04.103.

X. Pan and Y.-J. Xu, The Journal of Physical Chemistry C 117, 17996–18005 (2013), 10.1021/jp4064802.

Z. Jiang, H. Wang, H. Huang, and C. Cao, en, Chemosphere 56, 503–508 (2004), https://doi.org/10.1016/j.chemosphere.2004.02.006.

V. Morgunov and D. Rudenko, Method of photocatalytic disinfection and purification of air from harmful gas compounds,dust, UA Patent 108560, Jul. 2016.

K.-H. Chung, S. Jeong, B.-J. Kim, K.-H. An, Y.-K. Park, and S.-C. Jung, en, International Journal of Hydrogen Energy 43, 11422–11429 (2018), https://doi.org/10.1016/j.ijhydene.2018.03.190.

J. F. Gomes, A. Lopes, K. Bednarczyk, M. Gmurek, M. Stelmachowski, A. Zaleska-Medynska, M. E. Quinta-Ferreira, R. Costa, R. M. Quinta-Ferreira, and R. C. Martins, en, ChemEngineering 2, 4 (2018), https://doi.org/10.3390/chemengineering2010004.

N. Singhal and U. Kumar, en, Molecular Catalysis 439, 91–99 (2017), https://doi.org/10.1016/j.mcat.2017.06.031.

J. Choi, H. Park, and M. R. Hoffmann, The Journal of Physical Chemistry C 114, 783–792 (2010), https://doi.org/10.1021/jp908088x.

J. M. Mac´ak, H. Tsuchiya, A. Ghicov, and P. Schmuki, en, Electrochemistry Communications 7, 1133–1137 (2005), https://doi.org/10.1016/j.elecom.2005.08.013.

G. Yang, Z. Yan, and T. Xiao, en, Applied Surface Science 258, 8704–8712 (2012), https://doi.org/10.1016/j.apsusc.2012.05.078.

A. Zaleska, Recent Patents on Engineering 2, 157–164 (2008), https://doi.org/10.2174/187221208786306289.

S. G. Kumar and K. S. R. K. Rao, en, Applied Surface Science, 2nd International Symposium on Energy and Environmental Photocatalytic Materials 391, 124–148 (2017), https://doi.org/10.1016/j.apsusc.2016.07.081.

N. Serpone and A. V. Emeline, en, International Journal of Photoenergy 4, 91–131 (2002), https://dpoi.org/10.1155/S1110662X02000144.

S. E. Braslavsky and K. N. Houk, de, Pure and Applied Chemistry 60, 1055–1106 (1988), https://doi.org/10.1351/pac198860071055.

J. W. Verhoeven, de, Pure and Applied Chemistry 68, 2223–2286 (1996), https://doi.org/10.1351/pac199668122223.

S. E. Braslavsky, A. M. Braun, A. E. Cassano, A. V. Emeline, M. I. Litter, L. Palmisano, V. N. Parmon, and N. Serpone, de, Pure and Applied Chemistry 83, 931–1014 (2011), https://doi.org/10.1351/PAC-REC-09-09-36.

R. M. Wood, Proceedings of the Physical Society (1958-1967) 80, 783 (1962), https://doi.org/10.1088/0370-1328/80/3/323.

C. A. Hampel, The encyclopedia of the chemical elements, English, OCLC: 449569 (Reinhold Book Corp., New York, 1968).

F. Grant, Reviews of Modern Physics 31, 646–674 (1959), https://doi.org/10.1103/RevModPhys.31.646.

G. V. Samsonov, The Oxide Handbook, en, IFI Data Base Library (Springer US, 1973),https://doi.org/10.1007/978-1-4615-9597-7.

L. Dubrovinsky, N. Dubrovinskaia, V. Swamy, J. Muscat, N. Harrison, R. Ahuja, B. Holm, and B. Johansson, Nature 410, 653–654 (2001), https://doi.org/10.1038/35070650.

U. Diebold, en, Surface Science Reports 48, 53–229 (2003), https://doi.org/10.1016/S0167-5729(02)00100-0.

S. M. Bard A J and S Licht, Encyclopedia of electrochemistry. Vol. 6. Semiconductor electrodes and photoelectrochemistry, 2002.

K. V. K. Rao, S. V. N. Naidu, and L. Iyengar, en, Journal of the American Ceramic Society 53, 124–126 (1970), https://doi.org/10.1111/j.1151-2916.1970.tb12051.x.

D. A. H. Hanaor and C. C. Sorrell, en, Journal of Materials Science 46, 855–874 (2011), https://doi.org/10.1007/s10853-010-5113-0.

T. Jones, J. Edwards, and J. Kallioinen, en, in Kirk-Othmer Encyclopedia of Chemical Technology (American Cancer Society, 2019), pp. 1–76,https://doi.org/10.1002/0471238961.0914151805070518.a01.pub4.

J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, Journal of the American Chemical Society 109, 3639–3646 (1987), https://doi.org/10.1021/ja00246a021.

T. Hahn and P. Paufler, en, Crystal Research and Technology 19, 1306–1306 (1984), https://doi.org/10.1002/crat.2170191008.

J. Zhang, P. Zhou, J. Liu, and J. Yu, en, Physical Chemistry Chemical Physics 16, 20382–20386 (2014), https://doi.org/10.1039/C4CP02201G.

K Madhusudan Reddy, S. V. Manorama, and A Ramachandra Reddy, en, Materials Chemistry and Physics 78, 239–245 (2003), https://doi.org/10.1016/S0254-0584(02)00343-7.

N. Serpone, The Journal of Physical Chemistry B 110, 24287–24293 (2006), https://doi.org/10.1021/jp065659r.

N. Daude, C. Gout, and C. Jouanin, Physical Review B 15, 3229–3235 (1977), https://doi.org/10.1103/PhysRevB.15.3229.

H. Wang and J. P. Lewis, en, Journal of Physics: Condensed Matter 18, 421–434 (2005), https://doi.org/10.1088/0953-8984/18/2/006.

D. Mardare, M. Tasca, M. Delibas, and G. I. Rusu, en, Applied Surface Science 156, 200–206 (2000), https://doi.org/10.1016/S0169-4332(99)00508-5.

T. Ohno, K. Sarukawa, and M. Matsumura, The Journal of Physical Chemistry B 105, 2417–2420 (2001), https://doi.org/10.1021/jp003211z.

S. Chambers, S. Thevuthasan, R. Farrow, R. Marks, J. Thiele, L. Folks, M. Samant, A. Kellock, N. Ruzycki, D. Ederer, and U. Diebold, Applied Physics Letters 79, 3467–3469 (2001), https://doi.org/10.1063/1.1420434.

Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara, and H. Koinuma, Science 291, 854–856 (2001), https://doi.org/10.1126/science.1056186.

W. M¨onch, Semiconductor Surfaces and Interfaces, en, 3rd ed., Springer Series in Surface Sciences (Springer-Verlag, Berlin Heidelberg, 2001),https://doi.org/10.1007/978-3-662-04459-9.

P. J. D. Lindan, N. M. Harrison, M. J. Gillan, and J. A. White, Physical Review B 55, 15919–15927 (1997), https://doi.org/10.1103/PhysRevB.55.15919.

Z. Wang, B. Wen, Q. Hao, L.-M. Liu, C. Zhou, X. Mao, X. Lang, W.-J. Yin, D. Dai, A. Selloni, and X. Yang, Journal of the American Chemical Society 137, 9146–9152 (2015), https://doi.org/10.1021/jacs.5b04483.

B.Wen, Q. Hao, W.-J. Yin, L. Zhang, Z.Wang, T.Wang, C. Zhou, A. Selloni, X. Yang, and L.-M. Liu, en, Physical Chemistry Chemical Physics 20, 17658–17665 (2018), https://doi.org/10.1039/C8CP02648C.

W.-J. Yin, B. Wen, C. Zhou, A. Selloni, and L.-M. Liu, en, Surface Science Reports 73, 58–82 (2018), https://doi.org/10.1016/j.surfrep.2018.02.003.

A. G. Thomas, W. R. Flavell, A. K. Mallick, A. R. Kumarasinghe, D. Tsoutsou, N. Khan, C. Chatwin, S. Rayner, G. C. Smith, R. L. Stockbauer, S. Warren, T. K. Johal, S. Patel, D. Holland, A. Taleb, and F. Wiame, Physical Review B 75, 035105 (2007), https://doi.org/10.1103/PhysRevB.75.035105.

M. Setvin, C. Franchini, X. Hao, M. Schmid, A. Janotti, M. Kaltak, C. G. Van de Walle, G. Kresse, and U. Diebold, Physical Review Letters 113, 086402 (2014), https://doi.org/10.1103/PhysRevLett.113.086402.

Q. Guo, C. Zhou, Z. Ma, and X. Yang, en, Advanced Materials 31, 1901997 (2019), https://doi.org/10.1002/adma.201901997.

N. A. Deskins, R. Rousseau, and M. Dupuis, The Journal of Physical Chemistry C 114, 5891–5897 (2010), https://doi.org/10.1021/jp101155t.

R. R. D. Center, ASTM G173-03 Tables (2012).

M. A. Henderson, en, Surface Science Reports 66, 185–297 (2011), 10.1016/j.surfrep.2011.01.001.

S. Kohtani, A. Kawashima, and H. Miyabe, en, Catalysts 7, 303 (2017), https://doi.org/10.3390/catal7100303.

Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, and M. Tachiya, en, Physical Chemistry Chemical Physics 9, 1453–1460 (2007), https://doi.org/10.1039/B617552J.

Y. Yamada and Y. Kanemitsu, Applied Physics Letters 101, 133907 (2012), https://doi.org/10.1063/1.4754831.

R. H. Bube, Photoconductivity of solids (Wiley, New York, 1978).

D. M. Eagles, Journal of Physics and Chemistry of Solids 25, 1243–1251 (1964), https://doi.org/10.1016/0022-3697(64)90022-8.

J. M. Lantz and R. M. Corn, The Journal of Physical Chemistry 98, 9387–9390 (1994), https://doi.org/10.1021/j100069a022.

A. Stevanovic and J. T. Yates, The Journal of Physical Chemistry C 117, 24189–24195 (2013), https://doi.org/10.1021/jp407765r.

T. Berger, M. Sterrer, O. Diwald, E. Kn¨ozinger, D. Panayotov, T. L. Thompson, and J. T. Yates, The Journal of Physical Chemistry B 109, 6061–6068 (2005), https://doi.org/10.1021/jp0404293.

L. Liu and T.-K. Sham, en, in Titanium dioxide - material for a sustainable environment, edited by D. Yang (InTech, June 2018),https://doi.org/10.5772/intechopen.72856.

L. Gundlach, R. Ernstorfer, and F. Willig, Physical Review B 74, 035324 (2006), 10.1103/PhysRevB.74.035324.

R. Qian, H. Zong, J. Schneider, G. Zhou, T. Zhao, Y. Li, J. Yang, D. W. Bahnemann, and J. H. Pan, en, Catalysis Today, Advances in photo(electro)catalysis for environmental applications and chemical synthesis 335, 78–90 (2019), https://doi.org/10.1016/j.cattod.2018.10.053.

A. Stevanovic and J. T. Yates, Langmuir 28, 5652–5659 (2012), 10.1021/la205032j.

T. Bredow and K. Jug, The Journal of Physical Chemistry 99, 285–291 (1995), https://doi.org/10.1021/j100001a044.

V. Shapovalov, E. V. Stefanovich, and T. N. Truong, en, Surface Science 498, L103–L108 (2002), https://doi.org/10.1016/S0039-6028(01)01595-3.

Y. Ji, B. Wang, and Y. Luo, The Journal of Physical Chemistry C 116, 7863–7866 (2012), https://doi.org/10.1021/jp300753f.

M. Anpo, T. Shima, and Y. Kubokawa, Chemistry Letters 14, 1799–1802 (1985), https://doi.org/10.1246/cl.1985.1799.

O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac, and M. C. Thurnauer, The Journal of Physical Chemistry 97, 7277–7283 (1993), https://doi.org/10.1021/j100130a026.

C. Di Valentin, G. Pacchioni, and A. Selloni, Physical Review Letters 97, 166803 (2006), https://doi.org/10.1103/PhysRevLett.97.166803.

Y. Tamaki, K. Hara, R. Katoh, M. Tachiya, and A. Furube, The Journal of Physical Chemistry C 113, 11741–11746 (2009), https://doi.org/10.1021/jp901833j.

M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chemical Reviews 95, 69–96 (1995), https://doi.org/10.1021/cr00033a004.

H. H. Mohamed, R. Dillert, and D. W. Bahnemann, en, Journal of Photochemistry and Photobiology A: Chemistry 217, 271–274 (2011), https://doi.org/10.1016/j.jphotochem.2010.09.024.

P. F. Schwarz, N. J. Turro, S. H. Bossmann, A. M. Braun, A.-M. A. A. Wahab, and H. Duerr, The Journal of Physical Chemistry B 101, 7127–7134 (1997), https://doi.org/10.1021/jp971315c.

S. Kim and W. Choi, Environmental Science & Technology 36, 2019–2025 (2002), https://doi.org/10.1021/es015560s.

D. P. Colombo Jr and R. M. Bowman, The Journal of Physical Chemistry 99, 11752–11756 (1995), https://doi.org/10.1021/j100030a020.

K. M. Schindler and M. Kunst, Journal of Physical Chemistry 94, 8222–8226 (1990), https://doi.org/10.1021/j100384a045.

Z. Zhang and J. T. Yates, The Journal of Physical Chemistry C 114, 3098–3101 (2010), 10.1021/jp910404e.

D. P. Colombo and R. M. Bowman, The Journal of Physical Chemistry 100, 18445–18449 (1996), https://doi.org/10.1021/jp9610628.

Published
2021-12-10
Cited
How to Cite
Morgunov, V., Lytovchenko, S., Chyshkala, V., Riabchykov, D., & Matviienko, D. (2021). Comparison of Anatase and Rutile for Photocatalytic Application: the Short Review. East European Journal of Physics, (4), 18-30. https://doi.org/10.26565/2312-4334-2021-4-02

Most read articles by the same author(s)