Application of Particular Solutions of the Burgers Equation to Describe the Evolution of Shock Waves of Density of Elementary Steps
Abstract
Particular solutions of the Burgers equations (BE) with zero boundary conditions are investigated in an analytical form. For values of the shape parameter greater than 1, but approximately equal to 1, the amplitude of the initial periodic perturbations depends nonmonotonically on the spatial coordinate, i.e. the initial perturbation can be considered as a shock wave. Particular BE solutions with zero boundary conditions describe a time decrease of the amplitude of initial nonmonotonic perturbations, which indicates the decay of the initial shock wave. At large values of the shape parameter , the amplitude of the initial periodic perturbations depends harmoniously on the spatial coordinate. It is shown that over time, the amplitude and the spatial derivative of the profile of such a perturbation decrease and tend to zero. Emphasis was put on the fact that particular BE solutions can be used to control numerical calculations related to the BE-based description of shock waves in the region of large spatial gradients, that is, under conditions of a manifold increase in spatial derivatives. These solutions are employed to describe the profile of a one-dimensional train of elementary steps with an orientation near <100>, formed during the growth of a NaCl single crystal from the vapor phase at the base of a macroscopic cleavage step. It is shown that the distribution of the step concentration with distance from the initial position of the macrostep adequately reflects the shock wave profile at the decay stage. The dimensionless parameters of the wave are determined, on the basis of which the estimates of the characteristic time of the shock wave decay are made.
Downloads
References
T.L. Einstein, in: Handbook of Crystal Growth, vol. 1,edited by T. Nishinaga, (Elsevier, Amsterdam, 2015), pp.215-264, https://doi.org/10.1016/B978-0-444-56369-9.00005-8
N. Akutsu, and T. Yamamoto, in: Handbook of Crystal Growth,vol. 1, edited by T. Nishinaga (Elsevier, Amsterdam, 2015), pp.265-313, https://doi.org/10.1016/B978-0-444-56369-9.00006-X
C. Misbah, O. Pierre-Louis, and Y. Saito, Rev. Modern Phys. 82, 981 (2010), https://doi.org/10.1103/RevModPhys.82.981
A.A. Chernov, J. Optoelectron. Adv. M. 5(3) 575 (2003), https://old.joam.inoe.ro/arhiva/pdf5_3/Chernov.pdf
T. Yamaguchi, K. Ohtomo, S. Sato, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato,H. Tsuge, and T. Yano, J. Cryst. Growth, 431, 24 (2015), https://doi.org/10.1016/j.jcrysgro.2015.09.002
T. Mitani, N. Komatsu, T. Takahashi, T. Kato, S. Harada, T. Ujihara, T. Ujihara, Y. Matsumoto, K. Kurashige, and H. Okumura, J. Cryst. Growth, 423, 45 (2015),https://doi.org/10.1016/j.jcrysgro.2015.04.032
A. Gura, G. Bertino, B. Bein, and M. Dawber, Appl. Phys. Lett. 112(18), 182902-1-4 (2018), https://doi.org/10.1063/1.5026682.
H. Morkoc, Handbook of Nitride Semiconductors and Devices, (Wiley-VCH, New-York, 2008), pp.1257.
I. Berbezier, and A. Ronda, Surf. Sci. Rep. 64(2), 47 (2009), https://doi.org/10.1016/j.surfrep.2008.09.003
I. Goldfarb, Nanotechnology, 18(33), 335304-1-7 (2007), https://doi.org/10.1088/0957-4484/18/33/335304
J. Bao, O. Yasui, W. Norimatsu, K. Matsuda, and M. Kusunoki, Appl. Phys. Lett. 109(8), 081602-1-5 (2016), https://doi.org/10.1063/1.4961630
M. Hou, Z. Qin, L. Zhang, T. Han, M. Wang, F. Xu, X. Wang, T. Yu, Z. Fang, and B. Shen, Superlattices Microstruct. 104, 397 (2017), https://doi.org/10.1016/j.spmi.2017.02.051
K. Matsuoka, S. Yagi, and H. Yaguchi, J. Cryst. Growth, 477, 201 (2017), https://doi.org/10.1016/j.jcrysgro.2017.05.021
M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56(9), 889 (1986), https://doi.org/10.1103/PhysRevLett.56.889
J.P. v.d. Eerden, and H. Müller-Krumbhaar, Phys. Rev. Lett. 579(19), 2431 (1986), https://doi.org/10.1103/PhysRevLett.57.2431
S. Stoyanov, Jpn. J. Appl. Phys. 30(1R), 1 (1991), https://doi.org/10.1143/JJAP.30.1
M. Vladimirova, A. De Vita, and A. Pimpinelli, Phys. Rev. B. 64(24), 24520-1-6 (2001), https://doi.org/10.1103/PhysRevB.64.245420.
C. Duport, P. Nozières, and J. Villain, Phys. Rev. Lett. 74(1), 134 (1995), https://doi.org/10.1103/PhysRevLett.74.134
I. Derényi, C. Lee, and A.-L. Barabási, Phys. Rev. Lett. 80(7), 1473 (1998), https://doi.org/10.1103/PhysRevLett.80.1473
J.B. Keller, H.G. Cohen, and G.J. Merchant, J. Appl. Phys. 73(8), 3694 (1993), https://doi.org/10.1063/1.352928
H. Popova, F. Krzyzewski, M.A. Załuska-Kotur, and V. Tonchev, Cryst. Growth Des. 20(11), 7246 (2020), https://doi.org/10.1021/acs.cgd.0c00927
F.C. Frank, in: Growth and Perfection of Crystals, edited by R.H. Doremus, B.W. Roberts, and D. Turnbull (John Wiley& Sons, New York, 1958), pp. 411.
N. Cabrera, and D.A. Vermilyea, in: Growth and Perfection of Crystals, edited by B.W. Roberts, and D. Turnbull (John Wiley& Sons, New York, 1958), pp.393.
M.J. Lighthill, and G.B. Whitham, Proc. R. Soc. Lond., Ser. A. 229(1178), 281 (1955), https://doi.org/10.1098/rspa.1955.0088
A.A. Chernov, Sov. Phys. Uspekhi. 4(1), 116 (1961),http://dx.doi.org/10.1070/PU1961v004n01ABEH003328
Ya.E. Geguzin, and N.N. Ovcharenko, Sov. Phys. Uspekhi. 5(1), 129(1962), https://dx.doi.org/10.1070/PU1962v005n01ABEH003403.
Yu.S. Kaganovskii, V.V. Grischenko, and J. Zikkert, Sov. Phys. Crystallogr. 28(3), 321 (1983). (in Russian).
О.P. Kulyk, V.I Tkachenko, O.V. Podshyvalova, V.A. Gnatyuk, and T. Aoki, J. Cryst. Growth, 530, 125296-1-7 (2020), https://doi.org/10.1016/j.jcrysgro.2019.125296
V.G. Bar'yakhtar, A.E. Borovik, Yu.S. Kaganovskii. JETP Lett. 47(8), 474 (1988), http://jetpletters.ru/ps/1095/article_16544.pdf
J.M. Burgers, Adv. Appl. Mech. 1, 171 (1948), https://doi.org/10.1016/S0065-2156(08)70100-5
L. Landau, and E. Lifshitz, Course of Theoretical Physics, vol. 6, edited by L.D. Landau and E.M. Lifshitz (Elsevier,-Oxford, 2001), pp. 539, http://www.worldcat.org/isbn/0750627670
G.M. Zaslavsky, and R.Z. Sagdeev, An Introduction to Nonlinear Physics: From Pendulum to Turbulence and Chaos, (Nauka, Moscow, 1988), pp. 368. (in Russian), https://www.twirpx.com/file/86242
O.V. Rudenko, and S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, (Nauka, Moscow, 1975), pp. 287. (in Russian), https://www.twirpx.com/file/255873.
K.A. Naugolnykh, and L.A. Ostrovsky, Nonlinear Wave Processes in Acoustics, (Nauka, Moscow, 1990), pp. 237, https://www.twirpx.com/file/532109. (in Russian)
.E. Hopf, Comm. Pure Appl. Math. 3(3), 201 (1950), https://doi.org/10.1002/cpa.3160030302
J.D. Cole, Quart. Appl. Math. 9(3), 225 (1951), https://doi.org/10.1090/QAM/42889
N.M. Ryskin, D.I. Trubetskov, Nonlinear Waves, (Fizmatlit, Moscow, 2000), pp. 272, https://www.twirpx.com/file/276239. (in Russian)
A.V. Samokhin, Civil Aviation High Technologies. 220, 82 (2015), https://avia.mstuca.ru/jour/article/view/308. (In Russian)
A.V. Zaitsev, and V.N. Kudashov, Scientific Journal NRU ITMO. Processes and Food Production Equipment, 2(20), https://www.processes.ihbt.ifmo.ru
O. Kulyk, I. Hariachevska, O. Lisina, V. Tkachenko, O. Andrieieva, O. Podshyvalova, V. Gnatyuk, and T. Aoki, in: Reiwa 1st Biomedicine Dental Engineering Collaborative Research Base Results Report Meeting (Book of Abstracts, Yokohama, 2020), Presentation No 1-11, p. 37.
A.P. Kulik, O.V. Podshyvalova, and I.G. Marchenko, Problems of Atomic Science and Technology, 2(120), 13 (2019), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2019_2/article_2019_2_13.pdf
O.P. Kulyk, L.A. Bulavin, S.F. Skoromnaya, and V.I. Tkachenko, in: Engineering for Sustainable Future. Inter-Academia 2019. Lecture Notes in Networks and Systems(LNNS), vol. 101, edited by A.R. Varkonyi-Koczy (Springer, Cham, 2020) pp. 326-339, https://doi.org/10.1007/978-3-030-36841-8_32
K.W. Keller, J. Cryst. Growth, 74(1), 161 (1986), https://doi.org/10.1016/0022-0248(86)90260-5
A.H. Ostadrahimi, H. Dabringhaus, and K. Wandelt, Surf. Sci. 521(3), 139 (2002), https://doi.org/10.1016/S0039-6028(02)02311-7
B.H. Zimm, and J.E. Mayer, J. Chem. Phys. 12(9), 362 (1944), https://doi.org/10.1063/1.1723958
Yu.S. Kaganovskii, O.P. Kulyk, in: VIIth European Conference on Surface Crystallography and Dynamics (ECSCD-7), Book of Abstracts, (Leiden, 2001), pp. 52.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).