Study of Structural and Electronic Properties of Intercalated Transition Metal Dichalcogenides Compound MTiS2 (M = Cr, Mn, Fe) by Density Functional Theory

  • Vandana B. Parmar Department of Physics, University School of Sciences, Gujarat University, Gujarat, India
  • Aditya M. Vora Department of Physics, University School of Sciences, Gujarat University, Gujarat, India https://orcid.org/0000-0002-2520-0266
Keywords: Density Functional Theory (DFT), Transition metal dichalcogenide compounds (TMDCs), Generalized Gradient Approximation (GGA), Quantum ESPRESSO code, Intercalated compound, ultra-soft pseudopotential

Abstract

In the present work, we have studied intercalated Transition Metal Dichalcogenides (TMDC) MTiS2 compounds (M = Cr, Mn, Fe) by Density Functional Theory (DFT) with Generalized Gradient Approximation (GGA). We have computed the structural and electronic properties by using first principle method in QUANTUM ESPRESSO computational code with an ultra-soft pseudopotential. A guest 3d transition metal M (viz; Cr, Mn, Fe) can be easily intercalated in pure transition metal dichalcogenides compound like TiS2. In the present work, the structural optimization, electronic properties like the energy band structure, density of states (DoS), partial or projected density of states (PDoS) and total density of states (TDoS) are reported. The energy band structure of MTiS2 compound has been found overlapping energy bands in the Fermi region. We conclude that the TiS2 intercalated compound has a small band gap while the doped compound with guest 3d-atom has metallic behavior as shown form its overlapped band structure.

Downloads

Download data is not yet available.

References

K. Motizuki, and N. Suzuki, Phys. New Mater., Springer Series in Material Sciences Volume 27, Ed. by F. E. Fujita, 106-138 (1994), https://doi.org/10.1007/978-3-662-00461-6_5.

N. Suzuki, Y. Yamasaki, K. Motizuki, J. De Physique. Solid State Phys. C. 8, 49201-49202 (1998), https://doi.org/10.1051/jphyscol:1988887.

Y.-S. Kim, J. Li, I. Tanaka, Y. Koyama, and H. Adachi, Mat. Trans. Jim. 41(8), 1088-1091 (2000), https://www.jim.or.jp/journal/e/pdf3/41/08/1088.pdf

Q. Bin, Z. Guo-Hua, LI Di, W. Jiang-Long, Q. Xiao-Ying, Z. Zhi, Phys. Lett. 24, 1050-1053 (2007), https://doi.org/10.1088/0256-307X/24/4/056.

T. Yamasaki, N. Suzuki, K. Motizuki, J. Phys. C: Solid State Phys. 20, 395-404 (1987), https://doi.org/10.1088/0022-3719/20/3/010.

Y. Sharma, S. Shukla, S. Dwivedi, and R. Sharma, Adv. Mater. Lett. 6(4), 294-300 (2015). https://doi.org/10.5185/amlett.2015.5608.

R.H. Friend, and A.D. Yoffe, Adv. Phys. 36, 1-94 (1987), https://doi.org/10.1080/00018738700101951.

J.A. Wilson, and A.D. Yoffe, Adv. Phys. 18, 193-335 (1969), https://doi.org/10.1080/00018736900101307.

V.B. Zala, A.M. Vora, and P.N. Gajjar, AIP Conf. Proc. 2100, 020027(1)-020027(4) (2019), https://doi.org/10.1063/1.5098581.

H.S. Patel, V.A. Dabhi, A.M. Vora, In: Singh D., Das S., Materny A. (Eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, 236, 389-395 (2019), https://doi.org/10.1007/978-981-15-0202-6_30.

V.A. Dabhi, H.S. Patel, and A.M. Vora, AIP Conf. Proc, 2224 (2020) 030003(1)-030003(4), https://doi.org/10.1063/5.0000484.

H.S. Patel, V.A. Dabhi and A.M. Vora, AIP Conf. Proc, 2224 (2020) 030006(1)-030006(4), https://doi.org/10.1063/5.0000485.

T. Matssushita, S. Suga, and A. Kimuta, Phys. Rev. B. 60, 1678-1686 (1999), https://doi.org/10.1103/PhysRevB.60.1678.

Y. Ueda, H. Negishi, and M. Koyana, M. Inoue, Solid State Comm. 57, 839-842 (1986), https://doi.org/10.1016/0038-1098(86)90188-2.

J.P. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Perderson, D. Singh, and C. Fiolhais, Phys. Rev. B. 48, 6671-6687 (1993), DOI: https://doi.org/10.1103/PhysRevB.46.6671.

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, WIEN2k. J. Chem. Phys. 152, 074101(1)-074101(30) (2020), https://doi.org/10.1063/1.5143061.

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.

http://www.quantum-espresso.org/pseudopotential

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, and A. Dal Corso, J. Phys. Condens. Matter, 21, 395502 (2009), https://doi.org/10.1088/0953-8984/21/39/395502.

W. Kohn, L.J. Sham, Phys. Rev. 140, A1133-A1138 (1965), DOI: https://doi.org/10.1103/PhysRev.140.A1133.

http://nisihara.wixsite.com/burai.

C.M. Fang, R.A. De Groot, C. Hass, Phys. Rev. B. 56, 4455-4463 (1947), https://doi.org/10.1103/PhysRevB.56.4455.

Published
2021-03-01
Cited
How to Cite
Parmar, V. B., & Vora, A. M. (2021). Study of Structural and Electronic Properties of Intercalated Transition Metal Dichalcogenides Compound MTiS2 (M = Cr, Mn, Fe) by Density Functional Theory. East European Journal of Physics, (1), 93-98. https://doi.org/10.26565/2312-4334-2021-1-12