Application of biological early warning systems: implementing a prospective approach to water quality monitoring

Keywords: water pollution, toxic properties of water, test object, biological monitoring, biotesting, biological early warning systems

Abstract

Purpose. To review international experience in the development and improvement of biological early warning systems.

Methodology. To assess the potential for improving existing biological early warning systems for continuous monitoring of water quality in different water categories.

Results. Behavioral responses have been used for decades as tools for testing aquatic toxicity, but have received much less attention than studies assessing lethality, development, or reproduction. With the improvement of visual and non-visual assessment tools and the increasing knowledge of the importance of behavior for health and fitness, interest in behavioral analysis has increased in recent years. However, to our knowledge, no quantitative evaluation of available methods for testing toxicity in organisms has ever been conducted, and it is unclear whether behavioral studies are a valuable addition to aquatic monitoring. This literature review suggests that behavioral assays are relatively rapid and sensitive and therefore deserve further attention as tools for assessing the toxicological effects of aquatic pollutants. We believe that research aimed at developing and optimizing behavioral assays could prove extremely useful to the field of toxicology, but future work should be directed at determining which specific behavioral patterns are most sensitive to different classes of pollutants, and at understanding the significance of changes in discrete behaviors for health and fitness impacts.

Conclusions. Biological Early Warning Systems (BEWS) rely largely on behavioral responses, with some also assessing other parameters, such as effects on algal chlorophyll fluorescence, at peak pollution levels, from which threshold values are derived. Behavioral changes are superior to mortality rates and other sublethal responses because they bridge the gap between individual and population relevance and are indicators of significant impacts of chemical contamination on a population before more serious consequences (i.e., population declines) occur.

Downloads

Download data is not yet available.

Author Biographies

O. M. Krainiukov , V. N. Karazin Kharkiv National University, 4, Svobody Sqr., 61022, Kharkiv, Ukraine

DSc (Geography), Prof.Professor at the Department of Ecology and Environmental Management

M.M. Shchokina, V. N. Karazin Kharkiv National University, 4, Svobody Sqr., 61022, Kharkiv, Ukraine

PhD Student

References

Krainyukov, O., Kryvytska, I., Naydyonova, O. (2024). Algorithm for evaluating the basic set of taxa to determine their effectiveness. Ukrainian Journal of Natural Sciences, 8, 252-269. https://doi.org/10.32782/naturaljournal.8.2024.26

Sandbacka, M., Christianson, I., Isoma, B. (2000). The acute toxicity of surfactants on fish cells, Daphnia magna and fish-A comparative study, Toxicology in Vitro, 14(1), 61-68. https://doi.org/10.1016/S0887-2333(99)00083-1

Roex, W.M., Giovannangelo, M., van Gestel, C.A.M. (2001). Reproductive Impairment in the Zebrafish, Danio rerio, upon Chronic Exposure to 1,2,3-Trichlorobenzene. Ecotoxicology and Environmental Safety, 48(2), 196-201. https://doi.org/10.1006/eesa.2000.2029

Slabbert, J.L., Venter, E.A. (1999). Biological assays for aquatic toxicity testing, Water Science and Technology, 39(10–11), 367-373. https://doi.org/10.1016/S0273-1223(99)00300-5

Baumgarten, S.. Escher, B. I., Fenner, K., Hofstetter, T. B., Wehrli, B. (2007). Evaluation of advanced treatment technologies for the elimination of pharmaceutical compounds. Water Sci. Technol., 56(5), 1-8. https://doi.org/10.2166/wst.2007.550

Schwarzenbach, R.P. Escher, B. I., Fenner, K., Hofstetter, T. B., Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072-1077. https://doi.org/10.1126/science.1127291

Loos, R. Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environ. Pollut., 157(2), 561-568. https://doi.org/10.1016/j.envpol.2008.09.020

Schäfer, R.B., von der Ohe, P. C., Kühne, R., Schüürmann, G., Liess, M. (2011). Occurrence and toxicity of 331 organic pollutants in large rivers of north Germany over a decade (1994 to 2004). Environ. Sci. Technol., 45 (14), 6167-6174. https://doi.org/10.1021/es2013006

Kienle, C., Vermeirssen, E. L. M., Schifferli, A., Singer, H., Stamm, C., Werner, I. (2019). Effects of treated wastewater on the ecotoxicity of small streams - unravelling the contribution of chemicals causing effects. PLoS One, 14(12), 1-30. https://doi.org/10.1371/journal.pone.0226278

Kienle, C. Werner, I., Fischer, S., Lüthi, C., Schifferli, A., Besselink, H.,. Langer, M., McArdell, C. S., Vermeirssen, E. L.M. (2022). Evaluation of a full-scale wastewater treatment plant with ozonation and different post-treatments using a broad range of in vitro and in vivo bioassays. Water Research, 212, 118084. https://doi.org/10.1016/j.watres.2022.118084

Mikol, Y.B., Richardson, W. R., Van Der Schalie, W. H., Shedd, T. R., Widder, M. W. (2007). An Online real-time biomonitor for contaminant surveillance in water supplies. J. Am. Water Works Assoc., 99(2), 107-115. https://doi.org/10.1002/j.1551-8833.2007.tb07873.x

Bownik A., Wlodkowic D. (2021). Advances in real-time monitoring of water quality using automated analysis of animal behavior. Sci. Total Environ., 789, 147796, https://doi.org/10.1016/j.scitotenv.2021.147796

Krainyukova, A. M., Krainyukov, O. M., Kryvytska, I. A. (2019). Study of the dependence of the toxic effect on the time of contact of toxicants with algae culture. Visnyk of the V. N. Karazin Kharkiv National University. Series "Ecology", (21), 72-80. https://doi.org/10.26565/1992-4259-2019-21-06

Krainyukova, A. M., Krainyukov, O. M., Kryvytska, I. A. (2020). Using photosynthetic activity of algae for toxicity assessment with the aim of creating a portable device. Bulletin of V. N. Karazin Kharkiv National University. Series "Ecology", (22). 82-92. https://doi.org/10.26565/1992-4259-2020-22-08

Krainyukov, O. M., Kryvytsk, I. A. (2020). Study of the dependence of the heart rate of Daphnia Magna on the concentration of the toxicant. International scientific journal "Internauka", 14(92), 7-10.

Gerhardt, A., Kienle, C., Allan, I. J., Greenwood, R., Guigues, N., Fouillac, A.-M., Millsd, G. A., Gonzaleze, C. (2007). Biomonitoring with Gammarus pulex at the meuse (NL), aller (GER) and rhine (F) rivers with the online multispecies freshwater biomonitor. J. Environ. Monit., 9, 979-985. https://doi.org/10.1039/b706619h

Baldwin, I. G., Harman, M. M.I., Neville, D. A. (1994). Performance characteristics of a fish monitor for detection of toxic substances-I. Laboratory trials. Water Research, 28(10), 2191-2199. https://doi.org/10.1016/0043-1354(94)90031-0

Scott, G. R., Sloman, K. A. (2004). The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquatic Toxicology, 68(4), 369-39. https://doi.org/10.1016/j.aquatox.2004.03.016

Gerhardt, A., Carlsson, A., Ressemann, C. (1998). A new online biomonitoring system for Gammarus pulex (L.) (Crustacea): in situ test below a copper effluent in South Sweden. Environ. Sci. Technol., (32), 150-156. https://doi.org/10.1021/es970442j

Maradona, A. Marshall, G., Mehrvar, M., Pushchak, R., Laursen, A. E., McCarth, L. H., Bostan, V., Kimberley, A. (2012). Utilization of multiple organisms in a proposed early-warning biomonitoring system for real-time detection of contaminants: preliminary results and modeling. Journal of Hazardous Materials, 219–220, 95-102. https://doi.org/10.1016/j.jhazmat.2012.03.064

Amiard-Triquet C. (2009). Behavioral Disturbances: The Missing Link between Sub-Organismal and Supra-Organismal Responses to Stress? Prospects Based on Aquatic Research. Human and Ecological Risk Assessment: An International Journal, 15(1), 87–110. https://doi.org/10.1080/10807030802615543

Gerhardt A. (2007). Aquatic Behavioral Ecotoxicology-Prospects and Limitations. Human and Ecological Risk Assessment: An International Journal, 13(3), 481–491. https://doi.org/10.1080/10807030701340839

Gerhardt, A., Ingram, M. K.,. Shimon, K. I. J. (2006). In situ on‐line toxicity biomonitoring in water: Recent developments. Environmental Toxicology and Chemistry, 25(9), 2263–2271, https://doi.org/10.1897/05-486R1.1

Shukla, S.J., Huang, R., Austin, C.P. (2010). The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discov. Today, 15(23–24), 997-1007. https://doi.org/10.1016/j.drudis.2010.07.007

Noack, U., Walter, J. (1992). The algae toximeter for continuous water monitoring. Schriftenreihe des Vereins fur Wasser-, Boden-und Lufthygiene, 89, P. 305-309.

Voetz, M. (2015). Application of an online toxicity early warning system upstream of the influent of the activated sludge stage of the Hamburg sewage treatment plant network. Anwendungsmöglichkeit eines Online-Toxizitäts-Frühwarnsystems vor dem Zulauf der Belebungsstufe des Hamburger Klärwerksverbundes. 5, 8-57. http://edoc.sub.uni-hamburg.de/haw/volltexte/2015/3032/

Ebert, D. (2005). Ecology, epidemiology and evolution of parasitism in Evolution. 3, https://doi.org/10.1108/02634501111102760

Moldaenke, C. (1998). Report of the project Weiterentwicklung eines mathematische n Modells zur on-line-Erkennung von signifikanten Messwert aenderungen i n dynamischen Biotestrerfahren. DCWK, 1, 2, 95-99.

Villa, S., Nica, V. D., Bellamoli, F., Pescatore, T., Ferrario, C., Finizio, A., Lencioni, V. (2018). Effects of a treated sewage effluent on behavioral traits in Diamesa cinerella and Daphnia magna. J. Limnol., 77(1), 121-130. https://doi.org/10.4081/jlimnol.2018.1760

Gerhardt, A.(2020). Online Biomonitoring for integrated smart real-time water management. Water Solut, 3, 20-23. https://www.limco-int.com/wp-content/uploads/2020/12/05_WasteWater_Report_LimCo.pdf

Strategiepapier Kontinuierliche Biotestverfahren für die Emissionsüberwachung. Working Group of the Federal States on Water Problems (LAWA): Stuttgart, Germany. 2000. https://www.hamburg.de/contentblob/113214/76a5a97b1732495bc7478916a338bb5a/data/emissionsueberwachung.pdf

Anliker, S. (2020). Assessing emissions from pharmaceutical manufacturing based on temporal high-resolution Mass spectrometry data. Environ. Sci. Technol., 54(7), 4110-4120, https://doi.org/10.1021/acs.est.9b07085

Balaram, V., Copia, L., Kumar, U. S., Miller, J., Chidambaram, S. (2023). Pollution of water resources and application of ICP-MS techniques for monitoring and management—A comprehensive review. Geosystems and Geoenvironment, 2(4), 100210. https://doi.org/10.1016/j.geogeo.2023.100210

Lapworth, D.J., Baran, N., Stuart, M.E. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut., 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034

Baillieul, M., Scheunders, P. (1998). On-line determination of the velocity of simultaneously moving organisms by image analysis for the detection of sublethal toxicity. Water Research, 32(4), 1027-1034. https://doi.org/10.1016/S0043-1354(97)00321-7

Benecke, G., Falke, W., Schmidt, C. (1982). Use of algal fluorescence for an automated biological monitoring system. Bulletin of Environmental Contamination and Toxicology. 28(4), 385-395. https://doi.org/10.1007/bf01607700

Michels E., Leynen, M., C. Cousyn., Meester, L. D., Ollevier, F. (1999). Phototactic behavior of Daphnia as a tool in the continuous monitoring of water quality: Experiments with a positively phototactic Daphnia magna clone. Water Res., 2, 401–408. https://doi.org/10.1016/S0043-1354(98)00213-9

Ren, Z., Zha, J., Ma, M., Wang, Z., Gerhardt, A. (2007). The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna. Environ. Monit. Assess., 134, 373–383. https://doi.org/10.1007/s10661-007-9629-y

Baillieul, M., Blust, R. (1999). Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquatic Toxicology, 44(4), 245-254. https://doi.org/10.1016/S0166-445X(98)00080-0

Bae, Mi-J., Park, Y.-S. (2014). Biological early warning system based on the responses of aquatic organisms to disturbances: A review. Science of The Total Environment, 466–467, 635-649. https://doi.org/10.1016/j.scitotenv.2013.07.075

Dodson, S. I., Hanazato, T., Gorski, P. R. (1995). Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environmental Toxicology and Chemistry, 14(1), 43-50. https://doi.org/10.1002/etc.5620140106

Published
2025-12-26
How to Cite
Krainiukov , O. M., & Shchokina, M. (2025). Application of biological early warning systems: implementing a prospective approach to water quality monitoring. Visnyk of V. N. Karazin Kharkiv National University. Series Еcоlogy, (33), 188-198. https://doi.org/10.26565/1992-4259-2025-33-13