Спектральні характеристики квіток інвазійного виду-геліофіту Erigeron canadensis l.

  • В. С. Феденко Дніпровський національний університет імені Олеся Гончара, проспект Науки, 72, м. Дніпро, 49045, Україна https://orcid.org/0000-0002-4696-6981
Ключові слова: злинка канадська, УФ-поглинальні флавоноїди, фотозахисний ефект, відбивальна характеристика, колориметрична характеристика

Анотація

Мета. Визначення спектральних характеристик квіток Erigeron canadensis L. для підтвердження фотопротекторного ефекту флавоноїдів та ідентифікації сировини.

Методи. Спектри відбиття отримували в діапазоні 350–800 нм. Колориметричні параметри визначали в системах CIE XYZ та CIE L*a*b*. Для додаткової ідентифікації флавоноїдів проводили екстракцію квіток ізопропанолом та хемосорбцію сполук з екстракту на поверхні біосумісного оксиду алюмінію із наступним визначенням спектральних характеристик.

Результати. Відбір квіток проводили на стадії цвітіння на відкритій території лука біля річки Мокра Сура (Новоолександрівка, Дніпропетровська область) з урахуванням, що найкращий розвиток геліофітів спостерігається за умов повного освітлення. Вперше визначено відбивальні та колориметричні характеристики квіток для з’ясування світлопоглинальної здатності злинки канадської як інвазійного виду-геліофіту на стадії цвітіння. Визначальною особливістю спектрів відбиття квіток є підвищення інтенсивності максимуму УФ-поглинальних флавоноїдів порівняно із каротиноїдами та хлорофілами, які локалізовані у поверхневих тканинах. Диференціювання спектральної кривої відбиття квіток виявилось ефективним способом збільшення ступеня розподілення виявлених максимумів. Досліджені квітки також охарактеризовано специфічною сукупністю колориметричних параметрів. Флавоноїди як біологічно активні компоненти ідентифіковані завдяки хелатувальним властивостям шляхом хемосорбції із рослинного екстракту на біосумісному оксиді алюмінію та наступного визначення відбивальних та колориметричних характеристик продукту взаємодії.

Висновки. Підвищена локалізація флавоноїдів, що поглинають ультрафіолет, у поверхневих тканинах квіток обумовлює збільшення фотопротекторної здатності як адаптивне підсилення репродуктивної системи інвазійного виду-геліофіту. Результати можуть бути застосовані для підтвердження функціональних ознак інвазивності адвентивних рослин, а також для ідентифікації сировини злинки канадської та при використанні ресурсного потенціалу цього виду для отримання біологічно активних препаратів.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

В. С. Феденко , Дніпровський національний університет імені Олеся Гончара, проспект Науки, 72, м. Дніпро, 49045, Україна

канд. хім. наук, с. н. с., старший науковий співробітник Науково-дослідного інституту біології

 

 

Посилання

Dai, Z. C., Wan, L. Y., Qi, S. S., Rutherford, S., Ren, G. Q., Wan, J. S., & Du, D. L. (2020). Synergy among hypotheses in the invasion process of alien plants: a road map within a timeline. Perspectives in Plant Ecology, Evolution and Systematics, 47, 125575. https://doi.org/10.1016/j.ppees.2020.125575

Lorenzo, P., & Morais, M. C. (2023). Strategies for the management of aggressive invasive plant species. Plants, 12(13), 2482. https://doi.org/10.3390/plants12132482

Kowarik, I. (2023). Historical evidence for context-dependent assessment of Erigeron canadensis invasions in an 18th-century European landscape. NeoBiota, 89, 1-15. https://doi.org/10.3897/neobiota.89.111268

Huang, Z., Lin, M., & Chen, G. (2025). Common agricultural weeds among alien invasive plants in Chi-na: Species lists and their practical managing strategies. Heliyon, 11(2), e41772. https://doi.org/10.1016/j.heliyon.2025.e41772

Bajwa, A. A., Sadia, S., Ali, H. H., Jabran, K., Peerzada, A. M., & Chauhan, B. S. (2016). Biology and management of two important Conyza weeds: a global review. Environmental Science and Pollution Research, 23, 24694-24710. https://doi.org/10.1007/s11356-016-7794-7

Kalusová, V., Čeplová, N., Danihelka, J., Večeřa, M., Pyšek, P., Albert, A., Anastasiu, P., Biurrun, I., Boch, S., Cottaz, C., Essl, F., Kuzemko, A., Maslo, S., Mifsud, S., Protopopova, V. V., Shevera, M., Sîrbu, C., Svenning, J.-C., Welk, E., & Axmanová, I. (2024). Alien plants of Europe: an overview of national and regional inventories. Preslia, 96(2), 149-182. https://doi.org/10.23855/preslia.2024.149

Li, D., Potgieter, L. J., Aronson, M. F., Axmanová, I., Baiser, B., Carboni, M., Celesti-Grapow, L., Knapp, S., Kühn, I., Lacerda de Matos, A. C., Lososová, Z., Montaño-Centellas, F. A., Pyšek, P., Richardson, D. M., Trotta, L. B., Zenni, R. D., Cilliers, S. S., Clarkson, B. D., Davis, A. J. S., Dolan, R. W., Dyderski, M. K., Essl, F., Gaoue, O. G., Gui, J., Géron, C., Heringer, G., Hui, C., Khuroo, A. A., Klotz, S., Kotanen, P. M., Kreft, H., La Sorte, F. A., Lembrechts, J. J., Lenzner, B., Lepczyk, C. A., MacIvor, S., Martínez-Garza, C., Mori, A. S., Nilon, C., Pergl, J., Siebert, S. J., Tretyakova, A. S., Tsang, T. P. N., Uchida, K., van Kleunen, M., Vilà, M., Wang, H.-F., Weigelt, P., Werner, P., Williams, N. S. G., Winter, M. & Ca-dotte, M. W. (2025). GUBIC: The global urban biological invasions compendium for plants. Ecological Solutions and Evidence, 6(1), e70020. https://doi.org/10.1002/2688-8319.70020

Dubyna, D. V., Dziuba, T. P., Iemelianova, S. M., Protopopova, V. V., & Shevera, M. V. (2022). Alien species in the pioneer and ruderal vegetation of Ukraine. Diversity, 14(12), 1085. https://doi.org/10.3390/d14121085

Dubyna, D. V., Iemelianova, S. M., Dziuba, T. P., Tymoshenko, P. A., Protopopova, V. V., & Shevera, M. V. (2021). Alien plant invasion in the ruderal vegetation of Ukraine. Environmental & Socio-economic Studies, 9(4), 57-70. https://doi.org/10.2478/environ-2021-0025

Klymenko, T., & Ismagilova, A. (2021). Participation of invasive plant species in the formation of plant communities during regenerative successions. Ecological Sciences, (6), 39, 187-191. https://doi.org/10.32846/2306-9716/2021.eco.6-39.32 (in Ukrainian)

Tarasevich, O. V., & Orlov, O. O. (2013). Herbaceous alien plant species – threat for forest reneview and forest ecosystems in Zhytomyr Polissya. Scientific bulletin of UNFU, 23(16), 81-92. Retrieved from https://nv.nltu.edu.ua/Archive/2013/23_16/81_Tar.pdf (in Ukrainian)

Khomenko, S., Belmega, I., Kireitseva, H., & Khrutba, V. (2024). The role of phytoinvasion for the natural biodiversity of protected areas in Ukraine. Ecological Sciences, 1(2), 94-99. https://doi.org/10.32846/2306-9716/2024.eco.1-52.2.18 (in Ukrainian)

Kotkova, T. M., Kotyuk, L. A., Yaremenko, O. V., & Stotska, S. V. (2025). Study of flora communities under the impact of industrial mining at the Sokyrnytsia zeolite deposit in the Khust district of the Zakarpattia region. Ukrainian Journal of Natural Sciences, (11), 280-293. https://doi.org/10.32782/naturaljournal.11.2025.30 (in Ukrainian)

Zavialova, L. V., Protopopova, V. V., Panchenko, S. M., Smagol, V. O., Kolomiichuk, V. P., Kucher, O. O., & Shevera, M. V. (2022). The synantropization of vegetation cover of Ukraine as impact of military actions. In: Overcoming ecological risks and threats to the environment in emergency situations–2022. Serednyak T.K. Dnipro, 31-52. https://doi.org/10.23939/monograph2022 (in Ukrainian)

Kolomiichuk, V. P., & Zymaroieva, A. A. (2024). Features of vegetation restoration on military fortifi-cations in the Chornobyl radiation and ecological biosphere reserve. Biosphere Reserve "Askania No-va" Reports, (26), 142-150. https://doi.org/10.53904/1682-2374/2024-26/10 (in Ukrainian)

Oliynyk, P. (2024). Monitoring of the state of newly established biotopes and the composition of soils at the bottom of the Kakhovka reservoir. Ecological Sciences, (6), 142-148. https://doi.org/10.32846/2306-9716/2024.eco.6-57.21 (in Ukrainian)

Gioria, M., Hulme, P. E., Richardson, D. M., & Pyšek, P. (2023). Why are invasive plants successful? Annual Review of Plant Biology, 74, 635-670. https://doi.org/10.1146/annurev-arplant-070522-071021

Szigeti, V., Fenesi, A., Botta‐Dukát, Z., Kuhlmann, M., Potts, S. G., Roberts, S., Soltész, Z., Török, E., & Kovács‐Hostyánszki, A. (2023). Trait‐based effects of plant invasion on floral resources, hoverflies and bees. Insect Conservation and Diversity, 16(4), 483-496. https://doi.org/10.1111/icad.12640

Tichý, L., Axmanová, I., Dengler, J., Guarino, R., Jansen, F., Midolo, G., Nobis, M.P., Van Meerbeek, K., Aćić, S., Attorre, F., Bergmeier, E., Biurrun, I., Bonari, G., Bruelheide, H., Campos, J. A., Čarni, A., Chi-arucci, A., Ćuk, M., Ćušterevska, R., Didukh, Y., Dítě, D., Dítě, Z., Dziuba, T., Fanelli, G., Fernández-Pascual, E., Garbolino, E., Gavilán, R. G., Gégout, J.-C., Graf, U., Güler, B., Hájek, M., Hennekens, S. M., Jandt, U., Jašková, A., Jiménez-Alfaro, B., Julve, P., Kambach, S., Karger, D. N., Karrer, G., Kavgac, A., Knollová, I., Kuzemko, A., Küzmič, F., Landucci, F., Lengyel, A., Lenoir, J., Marcenò, C., Moeslund, J. E., Novák, P., Pérez-Haase, A., Peterka, T., Pielech, R., Pignatti, A., Rašomavičius, V., Rūsiņa, S., Saat-kamp, A., Šilc, U., Škvorc, Ž., Theurillat, J.-P., Wohlgemuth, T., & Chytrý, M. (2023). Ellenberg-type in-dicator values for European vascular plant species. Journal of Vegetation Science, 34(1), e13168. https://doi.org/10.1111/jvs.13168

Bartelheimer, M., & Poschlod, P. (2016). Functional characterizations of Ellenberg indicator values–a review on ecophysiological determinants. Functional Ecology, 30(4), 506-516. https://doi.org/10.1111/1365-2435.12531

Humbal, A., & Pathak, B. (2023). Influence of exogenous elicitors on the production of secondary metabolite in plants: A review (“VSI: secondary metabolites”). Plant Stress, 8, 100166. https://doi.org/10.1016/j.stress.2023.100166

Ferreyra, M. L. F., Serra, P., & Casati, P. (2021). Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiol. Plant., 173(3), 736-749. https://doi.org/10.1111/ppl.13543

Fedenko, V. S. (2024). Reflectance characteristics of flowers as a criterion for invasiveness of Eriger-on annuus (L.) Pers. Ecology and Noospherology, 35(1), 52-57. https://doi.org/10.15421/032409 (in Ukrainian)

Pei, L., Song, Y., Chen, G., Mu, L., Yan, B., & Zhou, T. (2024). Enhancement of methane production from anaerobic digestion of Erigeron canadensis via O2-nanobubble water supplementation. Chemo-sphere, 354, 141732. https://doi.org/10.1016/j.chemosphere.2024.141732

Laptiev, V., Giltrap, M., Tian, F., & Ryzhenko, N. (2024). Assessment of heavy metals (Cr, Cu, Pb, and Zn) bioaccumulation and translocation by Erigeron canadensis L. in polluted soil. Pollutants, 4(3), 434-451. https://doi.org/10.3390/pollutants4030029

Gan, C., Liu, Z., Pang, B., Zuo, D., Hou, Y., Zhou, L., Yu, J., Chen, L., Wang, H., Gu, L., Du, X., Zhu, B., & Yi, Y. (2022). Integrative physiological and transcriptome analyses provide insights into the cadmi-um (Cd) tolerance of a Cd accumulator: Erigeron canadensis. BMC genomics, 23(1), 778. https://doi.org/10.1186/s12864-022-09022-5

Aytar, E. C., Basılı, T., Durmaz, A., Aydın, B., Seyfeli, R. C., Kahyaoğlu, İ. M., & Karakuş, S. (2025). Zero‐waste production of copper nanoparticles and activated carbon from Erigeron canadensis L.: A sustainable approach for environmental and health applications. ChemistrySelect, 10(7), e202405073. https://doi.org/10.1002/slct.202405073

Rudenko, V. P., & Serbin, A. G. (2016). [Fleabane In Pharmaceutical encyclopedia (3th ed.)]. MORION. Kyiv, 666–667. Retrieved from https://www.pharmencyclopedia.com.ua/article/1601/zlinka (in Ukrainian)

Barhoumi, L. M., Shakya, A. K., Al-Fawares, O. L., & Al-Jaber, H. I. (2024). Conyza canadensis from Jordan: Phytochemical profiling, antioxidant, and antimicrobial activity evaluation. Molecules, 29(10), 2403. https://doi.org/10.3390/molecules29102403

Šutovská, M., Kocmálová, M., Mažerik, J., Pawlaczyk-Graja, I., Gancarz, R., & Capek, P. (2022). Chem-ical characteristics and significant antitussive effect of the Erigeron canadensis polyphenolic polysac-charide-protein complex. Journal of Ethnopharmacology, 284, 114754. https://doi.org/10.1016/j.jep.2021.114754

Paulovičová, E., Paulovičová, L., Pawlaczyk-Graja, I., Gancarz, R., Kopáčová, M., & Capek, P. (2022). Effectivity of polyphenolic polysaccharide-proteins isolated from medicinal plants as potential cellular immune response modulators. Biologia, 77(12), 3581-3593. https://doi.org/10.1007/s11756-022-01200-w

Hlushchenko, L. A., Kutsenko, N. I. (2023). Problems with identification of medicinal plants and medicinal plant raw materials. J. Native Alien Plant Stud., 19, 38–52. https://doi.org/10.37555/2707-3114.19.2023.293647 (in Ukrainian)

Fedenko, V. S. (2022). Chemisorption of flavonoids from canadian goldenrod on aluminum oxide. Journal of Chemistry and Technologies, 30(3), 340-348. https://doi.org/10.15421/jchemtech.v30i3.262972 (in Ukrainian)

Poljuha, D., Sladonja, B., Šola, I., Šenica, M., Uzelac, M., Veberič, R., Hudina, M., Famuyide, I. M., Eloff, J.N., & Mikulic-Petkovsek, M. (2022). LC–DAD–MS phenolic characterisation of six invasive plant species in Croatia and determination of their antimicrobial and cytotoxic activity. Plants, 11(5), 596. https://doi.org/10.3390/plants11050596

Karg, C. A., Taniguchi, M., Lindsey, J. S., & Moser, S. (2023). Phyllobilins–bioactive natural products derived from chlorophyll–Plant origins, structures, absorption spectra, and biomedical properties. Planta Medica, 89(06), 637-662. https://doi.org/10.1055/a-1955-4624

Taniguchi, M., LaRocca, C. A., Bernat, J. D., & Lindsey, J. S. (2023). Digital database of absorption spectra of diverse flavonoids enables structural comparisons and quantitative evaluations. Journal of Natural Products, 86(4), 1087-1119. https://doi.org/10.1021/acs.jnatprod.2c00720

Ohta, N., & Robertson, A. (2006). Colorimetry: fundamentals and applications. John Wiley & Sons, 352 p. Retrieved from https://www.academia.edu/34154313/Colorimetry_Fundamentals_and_Applications

Cairone, F., Carradori, S., Locatelli, M., Casadei, M. A., & Cesa, S. (2020). Reflectance colorimetry: A mirror for food quality—A mini review. European Food Research and Technology, 246(2), 259-272. https://doi.org/10.1007/s00217-019-03345-6

Fedenko, V. (2025). Light absorption capacity of flowers of the invasive species Ambrosia artemisiifo-lia L. Biota. Human. Technology, (1), 28-38. https://doi.org/10.58407/bht.1.25.2 (in Ukrainian)

Paz-Kagan, T., Silver, M., Panov, N., & Karnieli, A. (2019). Multispectral approach for identifying in-vasive plant species based on flowering phenology characteristics. Remote Sensing, 11(8), 953. https://doi.org/10.3390/rs11080953

Barrett, S. C., Colautti, R. I., & Eckert, C. G. (2008). Plant reproductive systems and evolution during biological invasion. Molecular Ecology, 17(1), 373-383. https://doi.org/10.1111/j.1365-294X.2007.03503.x

Landi, M., Shemet, S. A., & Fedenko, V. S. (Eds.). (2020). Metal toxicity in higher plants. Nova Science Publishers. Retrieved from https://novapublishers.com/shop/metal-toxicity-in-higher-plants/

Khan, S. A., Hanafy, A. A. E., Khan, A., Anwar, Y., Shah, Z., & Maher, S. (2016). Phytochemical inves-tigation of Conyza canadensis (L.). Middle-East Journal of Scientific Research, 24(4), 1104-1111. https://doi.org/10.5829/idosi.mejsr.2016.24.04.10369

Barhoumi, L. M., Shakya, A. K., Al-Fawares, O. L., & Al-Jaber, H. I. (2024). Conyza canadensis from Jordan: Phytochemical Profiling, Antioxidant, and Antimicrobial Activity Evaluation. Molecules, 29(10), 2403. https://doi.org/10.3390/molecules29102403

Colombo, M., Michels, L. R., Teixeira, H. F., & Koester, L. S. (2022). Flavonoid delivery by solid dispersion: a systematic review. Phytochemistry Reviews, 21, 783–808. https://doi.org/10.1007/s11101-021-09763-3

Опубліковано
2025-06-30
Як цитувати
Феденко , В. С. (2025). Спектральні характеристики квіток інвазійного виду-геліофіту Erigeron canadensis l. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Екологія», (32), 134-145. https://doi.org/10.26565/1992-4259-2025-32-10