Magnetically ordered structures of endogenous iron and the problem of the effect of steady magnetic fields on biological systems

  • V. F. Tchekhun National technical university of Ukraine “Kyiv polytechnic institute”
  • S. V. Gorobets National technical university of Ukraine “Kyiv polytechnic institute”
  • О. Yu. Gorobets National technical university of Ukraine “Kyiv polytechnic institute”
Keywords: endogenous iron, magnetosomes, magnetically sensitive structures, magnetite nanoparticles, magnetic field

Abstract

Analysis of forms of magnetically ordered structures of endogenous iron in cells of alive organisms is analyzed in this paper. In particular, fossils and microorganisms and phylogenetic meaning of such ferrimagnetic materials are considered. The attempts of investigation of the correlation between change of the quantity of endogenous ferrite nanoparticles, and their physicochemical properties and ferritin expression in normal, pathology cells and with aging. Mechanisms of permanent magnetic field influence on biosystems are mentioned. The estimations are carried out and it is shown that the magnetic field gradient of ferrite nanoparticle in a cell is several orders of magnitude greater than the gradients achieved in the experimental investigations. By the way, the proper magnetic field of endogenous ferrite nanoparticles and corresponding magnetochemical effects can be additional (nonmechanical) factors of influence on transport phenomena, diffusion, and electric potentials in cells.

Downloads

Download data is not yet available.

Author Biographies

V. F. Tchekhun, National technical university of Ukraine “Kyiv polytechnic institute”

37 Prospect Peremogy, Kiev 03056, Ukraine

S. V. Gorobets, National technical university of Ukraine “Kyiv polytechnic institute”

37 Prospect Peremogy, Kiev 03056, Ukraine

О. Yu. Gorobets, National technical university of Ukraine “Kyiv polytechnic institute”

37 Prospect Peremogy, Kiev 03056, Ukraine

References

1. Павлович С.А. Магниточувствительность и магнитовосприимчивость микроорганизмов // Минск: Беларусь – 1981. – C. 130.

2. Червинец В.М., Новицкий Ю., Павлович С.А. Магнитная восприимчивость микроорганизмов // Журнал гигиены, эпидемологии, микробиологии и иммунологии. – 1979. – T.23, №3. – С. 230 – 233.

3. Верховцева Н.В., Глебова И.Н. Особенности накопления железа бактериями по данным магнитных измерений // Биофизика. – 1993. – T.38, №1. – С. 150 – 154.

4. Шалыгин А.Н., Норина С.Б., Кондорский Е.Н. Магнитная восприимчивость и магнитный “захват” клеток // Биофизика. – 1984. – T.29, №5 – С.845 – 851.

5. Жолкевич В.Н., Волков Д.И., Пруднииков С.А. // Докл АН СССР. – 1971. – 197, №5. – С. 1210.

6. Новицкий Ю.И. Магнитное поле в медицине // Фрунзе: Илим. – 1974. – C. 136.

7. Blakemore R.P. Magnetotactic bacteria // Science. – 1975. – 190. – P. 377–379.

8. Верховцева Н.В. Образование бактериями магнетита и магнитотаксис // Успехи микробиологии. – 1992. – 25. – С. 51–79.

9. Dennis A. Bazylinski. Controlled biomineralisation of magnetic minerals by magnetotactic bacteria // Chemical Geology Elsevier. – V.132, I. 1-4. – 1996. – P. 191-198.

10. Вайнштейн М.Б., Сузина Н.Е., Сорокин Е.Б. К разнообразию магнитотактных бактерий // Микробиология. – 1998. – 67, №6. – С. 807–814.

11. Nishio H., Takahashi T. Magnetic Characterization of Bacterial Magnetic Particles // Journal de Physique. – V.4. – 1997. – P. 663–666.

12. Schuler D., Baeuerlein E. Iron Transport and Magnetite Crystal Formation of the Magnetic Bacterium Magnetospirillum gryphiswaldense // Journal de Physique. – V.4. – 1997. – P. 647–650.

13. Верховцева Н.В. Трансформация соединений железа гетеротрофными бактериями // Микробиология. – 1995. – 64, №4. – С. 473–478.

14. Frankel R. B., Blakemore R.P., Wolfe R.S. Magnetite in freshwater magnetotactic bacteria // Science. – 1979. – 203. – P. 1355–1356.

15. Torres de Araujo F.F., Pires M.A., Frankel R.B., Bicudo C.E.M. Magnetite and Magnetotaxis in Algae // Biophys. J. – 1985. – 50. – P. 375–378.

16. Vainshtein M.B., Suzina N.E., Sorokin V.V. A new type of magnetsensitive inclusions in cells of photosynthetic purple bacteria // Syst. Appl. Microbiol. – 1997. – 20. – P. 182–186.

17. Lowenstam H.A. Magnetite in denticle capping in recent chitons // Geol. Soc. Am. Bull. – 1,N.2. – 1973. – P. 435–438.

18. Gould J.L., Kirschvink J.L., Deffeyes K.S. Bees have magnetic remanence // Science. – 1978. – N.202. – P.1026-1028.

19. Walcott C., Gould J.L., Kirschvink J.L. Pigeons have magnets // Science. – 1979. – N.184. – P. 180–182.

20. Mann S., Sparks N.H.C., Walker M.M., Kirschvink J.L. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception // J. Exp. Biol. – 1988. – 140. – P. 35–49.

21. Kirschvink J.L., Jones D.S., MacFadden B.J. Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism // Plenum, New York. – 1985.

22. Heywood D.R., Bazylinski D.A., Garrattreed A., Mann S., Frankel R.B. Controlled Biomineralization of Magnetite (Fe3O4) and Greigite (Fe3S4) in a Magnetotactic Bacterium Naturwissenschaften. – 1990. – 77. – P. 536–538.

23. Cat Faber, Living Lodestones: Magnetotactic bacteria // Strange Horizons. – 2001. – V. 7. – P. 2. /www.strangehorizones.com/2001/20010702/living_lodestone.shtml.

24. Chang S.R., Kirschvink J.L. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralisation //Annu. Rev. Earth Planet. Sci. – 1989. – 17. – P. 169–195.

25. Kirschvink J.L., Kobayashi-Kirschvink A., Woodford B.J. Magnetite biomineralization in the human brain // Proc. Natl Acad. Sci. USA. – 1992. – 89. – P. 7683–7687.

26. Dunn J.R., Fuller M., Zoeger J., Dobson J.P., Heller F., Caine E., Moskowitz B.M. Magnetic material in the human hippocampus // Brain Res. Bull., – 1995. – 36. – P. 149–153.

27. Dobson J.P., Fuller M., Moser S., Wieser H.G., Dunn J.R., Zoeger J. Vocation of epileptiform activity by weak D.C. magnetic fields and iron biomineralization in the human brain // In: Biomagnetism: Fundamental Research and Applications, Elsevier, Amsterdam: – 1995. – P. 16–19.

28. Dobson J.P., Grassi P. Magnetic Properties of Human Hippocampal Tissue. Evaluation of Artefact and Contamination Sources // Brain Res. Bull. – 1996. – 39. – P. 255–259.

29. Schultheiss-Grassi P.P., Heller F., Dobson J. Analysis of magnetic material in the human heart, spleen and liver // BioMetals. – 1997. – 10. – P. 351–355.

30. Сильные и сверхсильные магнитные поля и их применение // Под ред. Ф. Херлаха. – М.: Мир. – 1988.

31. Morales M. P., Veintemillas-Verdaguer S., Montero M. I., Serna C. J., Roig A., Casas L., Martinez B., Sandiumenge F. Surface and internal spin canting in gamma-Fe2O3 nanoparticles // Chem. Mat. – 1999. – 11. – P. 3058–3064.

32. Arosio P., Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic. // Biol Med. – 2002. – 33. – P. 457–463.

33. Chasteen N.D., Harrison P.M. Mineralization in ferritin: an efficient means of iron storage. // J. Struct. Biol. – 1999. – 126. – P. 182–194.

34. Harrison P.M., Arosio P. Ferritins: molecular properties, iron storage function and cellular regulation. Biochim. // Biophys. Acta Bioenerg. – 1996. – 1275. – P. 161–203.

35. Pana Y.-H., Sadera K., Powell J.J. et al. 3D morphology of the human hepatic ferritin mineral core: New evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images // J Struct Biol. – 2009. – 166, №1. – P. 22–31.

36. Cowley J.M., Janney D.E., Gerkin R.C., Buseck P.R. The structure of ferritin cores determined by electron nanodiffraction // J. Struct. Biol. – 2000. – 131. – P. 210–216.

37. Quintana C., Cowley J.M., Marhic C. Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin // J. Struct. Biol. – 2004. – 147. – P. 166–178.

38. Quintana C., Lancin M., Marhic C., Perez M., Martin-Benito J., Avila J., Carrascosa J.L. Initial studies with high resolution TEM and electron energy loss spectroscopy studies of ferritin cores extracted from brains of patients with progressive supranuclear palsy and Alzheimer disease // Cell. Mol. Biol. – 2000. – 46. – P. 807–820.

39. Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease // FEBS Lett. – 2001. – 496. – P. 1–5.

40. Brem F, Hirt A.M., Winklhofer M., Frei K., Yonekawa Y., Weiser H.-G., Dobson J. Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue // Journal of the Royal Society Interface. – 2006. – 3. – P. 833-841.

41. Burdo J.R., Connor J.R. Brain iron uptake and homeostatic mechanisms: an overview // Biometals. – 2003. – 16. – P. 63–75.

42. Bartzokis G., Tishler T.A., Shin I.S. et al. Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases // Acad. Sci. – 2004. – 1012. – P. 224–236.

43. Чехун В.Ф., Шпилевская С.И. Роль ендогенного железа в формировании чувствительности к противоопухолевой терапии // Вопросы онкологи. – 2010. – Т. 56 N. 3. – С.251–261.

44. Quintana C., Bellefqih S., Laval J.Y. et al. Study of the localization of iron, ferritin and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level // J. Struct. Biol. – 2006. – 153. – P. 42–54.

45. Fuller M., Dobson J., Wieser H.G., Moser S. On the sensitivity of the human brain to magnetic-fields—evocation of epileptiform activity // Brain Res. Bull. – 1995. – 36. – P. 155–159.

46. Schultheiss-Grassi P.P., Dobson J. Magnetic analysis of human brain tissue // Biometals. – 1999. – 12. – 67–72.

47. Hautot D., Pankhurst Q.A., Khan N., Dobson J. Preliminary evaluation of nanoscale biogenic magnetite in Alzheimer’s disease brain tissue // Proc. R. Soc. B, – 2003. – 270. – P.62–S64.

48. Макаревич А.В. Влияние магнитных полей магнитопластов на процессы роста микроорганизмов // Биофизика. – 1999. – 44, №1. – C. 70 –74.

49. Литвинов Г.С., Полищук В.П., Бойко А.Л. Изменение структуры и биологических свойств бактериофага под воздействием постоянного магнитного поля // М.: Биополимеры и клетка. – 1992. – 8, №1. – C. 46–51.

50. Бойко А.Л., Швед А.Д., Григорян Ю.А. Вплив постійного магнітного поля на вірус тютюнової мозаїки // Вісн. АН УРСР. – 1975. – №8. – C. 26–31.

51. Nemec N., Horacova D., Svazil P. Changes in the growth of staphylophage 812 induced by a homogeneous magnetic field // Folia Fac. Sci. Nat. Univ. Puck Brun. – 1983. – №24. – P. 73–85.

52. Маре Г., Дрансфельд К. Биомолекулы и полимеры в сильных постоянных магнитных полях // Сильные и сверхсильные магнитные поля и их применения // М.: Мир. – 1988. – C. 180–254.

53. Бинги В.Н., Савин А.В. Физические проблемы действия слабих магнитных полей на биосистемы // УФН. – 173, № 3. – С. 265–300.

54. Kirschvink J.L. Comments on ‘‘Constraints on biological effects of weak extremely-low-frequency electromagnetic fields’’ // Phys Rev A. – 1992. – 46. – P. 2178–2184.

55. Dobson J. Remote control of cellular behavior with magnetic nanoparticles // Nature Nanotechnology. – 2008. – 3. – P. 139–143.

56. Dobson J., St. Pierre T.G. Application of the Ferromagnetic Transduction Model to D.C. and Pulsed Magnetic Fields: Effects on Epileptogenic Tissue and Implications for Cellular Phone Safety // Biochem Biophys Res Commun. – 1996. – 227. – P. 718–723.

57. Cartmell S.H., Dobson J., Verschueren S., El Haj A. Development of magnetic particle techniques for long-term culture of bone cells with intermittent mechanical activation // IEEE Transactions on NanoBioscience. – 2002. – 1. – P. 92–97.

58. Dobson J., Cartmell S.H., Keramane A., El Haj A.J. A magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning and dynamic in vitro screening // IEEE Trans NanoBiosci. – 2006. – 5. – P. 173–177.

59. Dobson J., Bowtell R., Garcia-Prieto A., Pankhurst Q. Safety Implications of High-Field MRI: Actuation of Endogenous Magnetic Iron Oxides in the Human Body // PLoS ONE. – 2009. – 4, №5. – Р. 1–3.

60. Tacken R.A., Janssen L.J.J. Applications of Magnetoelectrolysis // Journal of Applied Electrochemistry. – 1995. – 25, – P. 1-5.

61. Fahidy T.Z. Magnetoelectrolysis // Journal of Applied Electrochemistry. – 1983. – 13. – P. 553–563.

62. Waskaas M., Kharkats Y.I. Magnetoconvection Phenomena: a Mechanism for Influence of Magnetic Fields on Electrochemical Processes // Journal of Physical Chemistry. - 1999. – 103B, P. 4876-4883.

63. Aogaki R. Magnetic Field Effects in Electrochemistry // Magnetohydrodynamics. – 2001. – 37, № 1/2. – P. 143–150.

64. Coey J.M.D., Hinds G., Lyons M.E.G. Magnetic Field Effects on Fractal Electrodeposits // Europhysics Letters. – 1999. – 47. – P. 267–272.

65. Gorobets O.Y., Derecha D.O. Quasi-periodic Microstructuring of Iron Cylinder Surface under its Corrosion under Combined Electric and Magnetic Fields // Materials Science-Poland. – 2006. – 24, – P. 1017–1025.

66. Ilchenko M.Yu, Gorobets O.Yu, Bondar I.A., Gaponov A.M. Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid // J. Magn. Magn. Mater. – 2010. – 322. – P. 2075–2080.

67. Gorobets S.V., Donchenko M.I., Gorobets O.Yu., Goyko I.Yu. Effect of a magnetic field on the etching of steel in nitric acid solutions // Russian Journal of Physical Chemistry. – 2006. – 80, № 5. – P. 791–794.

68. Gorobets S.V., Gorobets O.Yu., Brukva O.M. Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field // Applied Surface Science. – 2005. – 252/2. – P. 448–454.

69. Bar’yakhtar V.G., Gorobets Yu.I., Gorobets O.Yu. Velocity distribution in electrolyte in the vicinity of a metal cylinder in a steady magnetic field // J. Magn. Magn. Mater. – 2004. – 272-276P3. – P. 2410–2412.

70. Gorobets Yu.I., Gorobets S.V. Formation of Stationary flows of liquid in vicinity of ferromagnetic packing in constant magnetic field. Magnetohydrodynamics. – 2000. – 36, №1. – P. 75–78.
Cited
How to Cite
Tchekhun, V. F., Gorobets, S. V., & GorobetsО. Y. (1). Magnetically ordered structures of endogenous iron and the problem of the effect of steady magnetic fields on biological systems. Biophysical Bulletin, 2(25). Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/2771
Section
Action of physical agents on biological objects