Complexes of hydrogen peroxide and DNA phosphate group in quantum chemical calculations

  • D. V. Piatnytskyi Bogolyubov Institute for Theoretical Physics http://orcid.org/0000-0002-8809-005X
  • S. N. Volkov Bogolyubov Institute for Theoretical Physics
Keywords: hydrogen peroxide, DNA phosphate group, stable complexes, quantum chemical calculations

Abstract

Background: Molecules of hydrogen peroxide (H2O2) can be formed during radiolysis process in water medium after irradiation. A hypothesis about the possible role of hydrogen peroxide in blocking of processes of nonspecific DNA recognition by proteins is proposed in [1]. As one of the most long-living products, H2O2 molecules can diffuse considerable distances in the intracellular medium and reach DNA in the cell nucleus and form complexes with macromolecule phosphate groups. To confirm this hypothesis, the quantum chemical calculations of complexes structure of hydrogen peroxide molecule with atomic groups of the DNA backbone are performed.

Objectives: To determine the optimal geometries and formation energies of stable complexes of hydrogen peroxide with DNA phosphate group. To perform a comparative analysis of hydrogen peroxide and water molecules binding to phosphate group based on quantum chemical calculations.

Materials and Methods: The complexes which consist of phosphate group, hydrogen peroxide, water molecules, and sodium counterion are analyzed. The optimization of complex geometry and energy calculations is performed using the methods of quantum chemistry within Gaussian 03 software: HF/6-31+G(d,p), MP2/6-31+G(d,p), B3LYP/6-31+G(d,p).

Results: This research shows that the hydrogen peroxide molecule as well as water molecule can form stable complexes with phosphate group, especially with the presence of sodium counterion Na+. The results of complex formation calculations with atom-atom potential functions method are confirmed. It is shown that the presence of sodium counterion significantly influences the geometry of the hydrogen peroxide complex with the phosphate group. The performed calculations indicate the possibility of hydrogen peroxide geometry change in the processes of complex formation.

Conclusions: The obtained results confirm the possibility of stable complexes forming for hydrogen peroxide and phosphate group. Prolonged situation of H2O2 molecule near the DNA backbone may block the nucleic-protein recognition processes as well as damage the macromolecule via decay into OH-radicals in close proximity to double helix.

Downloads

Download data is not yet available.

Author Biographies

D. V. Piatnytskyi, Bogolyubov Institute for Theoretical Physics

14-b, Metrolohichna Str., Kyiv, 03143, Ukraine

S. N. Volkov, Bogolyubov Institute for Theoretical Physics

14-b, Metrolohichna Str., Kyiv, 03143, Ukraine

References

Piatnytskyi, D. V., Zdorevskyi, O. O., Perepelytsya, S. M., & Volkov, S. N. (2015). Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action. Eur. Phys. J. D, 69, 255. doi: 10.1140/epjd/e2015-60210-9.

Le Caer, S. (2011). Water Radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, 3, 235–253. doi: 10.3390/w3010235.

Kreipl, M. S., Friedland, W., & Paretzke, H. G. (2009). Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation. Radiat. Environ. Biophys, 48, 11–20. doi: 10.1007/s00411-008-0194-8.

Uehara, S., & Nikjoo, H. (2006). Monte Carlo simulation of water radiolysis for low-energy charged particles. J. Radiat. Res, 47, 69–81. doi: 10.1269/jrr.47.69.

Manda, G., Nechifor, M. T., & Neagu, T.-M. (2009). Reactive oxygen species, cancer and anti-cancer therapies. Current Chemical Biology, 3, 22–46. doi: 10.2174/2212796810903010022.

Timofeev-Ressovsky, N. W., Savich, A. V., & Shal’nov, M. I. (1981). Vvedenie v molekulyarnuyu radiobiologiyu: fiziko-himicheskie osnovyi. Moskva: Meditsina. (in Russian).

Fenton, H. J. H. Oxidation of tartaric acid in presence of iron. (1894). J. Chem. Soc., Trans, 65, 899–911. doi: 10.1039/CT8946500899.

Kraft, G. Tumor therapy with heavy charged particles. (2000). Progress in Particle and Nuclear Physics, 45, S473–S544. doi: 10.1016/S0146-6410(00)00112-5.

Solov’yov, A. V., Surdutovich, E., Scifoni, E., Mishustin, I., & Greiner, W. (2009). Physics of ion beam cancer therapy: A multiscale approach. Phys. Rev. E. 79, 011909. doi: 10.1103/PhysRevE.79.011909.

Surdutovich, E., Yakubovich, A. V., & Solov’yov, A. V. Biodamage via shock waves initiated by irradiation with ions. (2013). Sci. Rep, 3, 1289. doi: 10.1038/srep01289.

Krämer, M., & Durante, M. Ion beam transport calculations and treatment plans in particle therapy. (2010). Eur. Phys. J. D, 60, 195–202. doi: 10.1140/epjd/e2010-00077-8.

Parrow, N. L., Leshin, J. A., & Levine, M. Parenteral ascorbate as a cancer therapeutic: a reassessment based on pharmacokinetics. (2013). Antioxidants & Redox Signaling, 19(17), 2141–2156. doi: 10.1089/ars.2013.5372.

Chen, Q., Espey, M. G., Krishna, M. C., Mitchell, J. B., Corpe, C. P., Buettner, G. R., ... Levine, M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. (2005). PNAS, 102(38), 13604–13609. doi: 10.1073/pnas.0506390102.

Gaussian 03, Revision C.02. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr. J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., Gaussian Inc., Wallingford CT, 2004.

Suenaga, M. Facio: new computational chemistry environment for PC GAMESS. (2005). Journal of Computer Chemistry, Japan, 4(1), 25–32. doi: 10.2477/jccj.4.25.

Boys, S. F., & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. (1970). Mol. Phys, 19(4), 553–566. doi: 10.1080/00268977000101561.

Gonzalez, L., Mo, O., & Yanez, M. High-level ab initio versus DFT calculations on (H2O2)2 and H2O2-H2O complexes as prototypes of multiple hydrogen bond systems. (1997). J. Comput. Chem, 18, 1124–1135. doi: 10.1002/(SICI)1096-987X(19970715)18:9<1124::AID-JCC2>3.0.CO;2-T.

Citations

The Possibility of Blocking the Process of DNA Base Pairs Opening by Hydrogen Peroxide
Zdorevskyi O. O. & Volkov S. N. (2019) Ukrainian Journal of Physics
Crossref

Published
2018-05-15
Cited
How to Cite
Piatnytskyi, D. V., & Volkov, S. N. (2018). Complexes of hydrogen peroxide and DNA phosphate group in quantum chemical calculations. Biophysical Bulletin, 1(39), 5-14. https://doi.org/10.26565/2075-3810-2018-39-01
Section
Molecular biophysics