Molecular dynamics simulation of different helical forms of polyribocytidylic acid
Abstract
The polyribocytidylic acid (polyrC) is known to exist in different helical forms depending on the acidity of the environment. At neutral pH, the polyrC adopts a form of a single-stranded helix, under the acidic conditions (рН 3.5-5.7) formation of multistranded polyrC structures becomes possible due to the presence of hemiprotonated C+-C pairs, at pH < 3.5, the polyrC exists as a random coil. There is still an open discussion in the literature concerning the helical form of polyrC in the pH range 3.5 - 5.7. Some arguments indicate that the polyrC adopts a duplex form, others support the quadruplex hypothesis. In view of this, the investigation of polyrC helical forms is of particular interest. We carried out molecular dynamics simulations of different helical forms of polyrC: single-stranded helix r(C10), duplex [r(C10)]2, and two topologies 3'E and 5'E of polyrC quadruplex [r(C5)]4 (i-motif). The stable 5 ns trajectories were obtained for 3'E and 5'E topologies of polyrC i-motif [r(C5)]4. The hydrogen bonds between bases in C+-C pairs remained during all the trajectory time. Furthermore, in the structure of polyrC i-motif, hydrogen bonds, and water bridges, connecting strands of different duplexes were found. The characteristic of the i-motif CH---O hydrogen bonds across the narrow grooves were absent during the most part of the trajectory time. The investigated models of polyrC duplex [r(C10)]2 (helical rise = 3.11 Ao, helical twist = 300 and helical rise = 3.11 Ao, helical twist = 440 ) were found to be unstable and destroyed during the simulation. Based on the results of our calculations, we concluded that even if polyrC exists in a duplex form its structure should be substantially different from the models we have studied. The structure of single-stranded polyrC r(C10) underwent considerable changes in the course of simulation: the root-mean-square deviation with respect to the first trajectory frame was found to be ~ 5 Ao. A substantial disturbance of base stacking in the single-stranded polyrC was observed. Possibly this was caused by the presence of a lot of intramolecular hydrogen bonds seen in the structure of single-stranded polyrC in the molecular dynamics trajectory. During the molecular dynamics simulation, the sugar pucker transitions from C3'-endo to C2'-endo conformation were detected. In the case of polyrC quadruplex, the majority of sugars remained in the C3'-endo or C4'-Exo conformation, whereas in the case of single-stranded polyrC, almost all sugars adopted unusual to its C2'-endo form.
Downloads
References
2. Arnott S., Chandrasekaran R., Leslie A.G. // J. Mol. Biol. 1976. V.106. P.735-748.
3. Borah B., Wood J.L. // J. Mol. Struct. 1976. V.30. P.13-30.
4. Hartman K.A., Rich A. // J. Am. Chem. Soc. 1965. V.87. P.2033-2039.
5. Langridge R., Rich A. // Nature. 1963. V.198. P.725-728.
6. Snoussi K., Nonin-Lecomte S., Leroy J.-L. // J. Mol. Biol. 2001. V.309. P.139-153.
7. Gehring K., Leroy J.-L., Gueron M. // Nature. 1993. V.363. P.561-564.
8. Manzini G., Yathindra N., Xodo L.E. // Nucl. Acids Res. 1994. V.22. P.4634-4640.
9. Kang C.H., Berger I., Lockshin C., Ratliff R., Moyzis R., Rich A. // Proc. Natl. Acad. Sci. USA. 1995. V.92. P.3874-3878.
10. Lacroix L., Mergny J.-L., Leroy J.-L., Helene C. // Biochemistry. 1996 V.35. P.8715-8722.
11. Gueron M., Leroy J.-L. // Curr. Opin. Struct. Biol. 2000. V.10. P.326-331.
12. Cai L., Chen L., Raghavan S., Ratliff R., Moyzis R., Rich A. // Nucl. Acids Res. 1998. V.26. P.4696-4705.
13. Kanaori K., Shibayama N., Gohda K., Tajma K., Makino K. // Nucl. Acids Res. 2001. V.29. P.831-840.
14. Sponer J., Leszczynski J., Vetterl V., Hobza P. // J. Biomol. Struct. Dyn. 1996. V.13. P.695-706.
15. Berger I., Egli M., Rich A. // Proc. Natl. Acad. Sci. USA. 1996. V.93. P.12116-12121.
16. Leroy J.-L., Snoussi K., Gueron M. // Magn. Reson. Chem. 2001. V.39. P.171-176.
17. Spackova N., Berger I., Egli M., Sponer J. // J. Am. Chem. Soc. 1998. V.120. P.6147–6151.
18. Gallego J., Golden E., Stanley D., Reid B. // J. Mol. Biol. 1999. V.285 P.1039-1052.
19. Malliavin T.E.; Gau, J.; Snoussi, K.; Leroy, J.-L. Biophys J 2003, 84, 3838-3847.
20. Mergny J.-L., Lacroix L., Han X., Leroy J.-L., Helene C. // J. Am. Chem. Soc. 1995. V.117. P.8887–8898.
21. Lacroix L., Mergny J.-L. // Arch. Of Biochem. and Biophys. 2000. V.381. P.153-163.
22. Krishnan-Ghosh Y., Stephens E., Balasubramanian S. // Chem. Commun. 2005. P.5278-5280.
23. Sharma N.K., Ganesh K.N. // Chem. Commun. 2005. P.4330-4332.
24. Kumar N., Nielsen J.T., Maiti S., Petersen M. // Angew. Chem. Int. Ed. 2007. V.46. P.9220-9222.
25. Modi S., Wani A.H., Krishnan Y. // Nucl. Acids Res. 2006. V.34. P.4354-4363.
26. Chakraborty S., Modi S., Krishnan Y. // Chem. Commun. 2008. P.70-72.
27. Chakraborty S., Krishnan Y. // Biochimie. 2008. V.90. P.1088-1095.
28. Maleev V., Semenov M., Kashpur V., Bolbukh T., Shestopalova A., Anishchenko D. // J. Mol. Struct. 2002. V.605. P.51-61.
29. Petrovic A.G., Polavarapu P.L. // J. Phys. Chem. B. 2006. V.110. P.22826-22833.
30. Cohen B., Larson M.H., Kohler B. // Chem. Phys. 2008. V.350. P.165-174.
31. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. GAUSSIAN-03, Revision A.1. Gaussian Inc. Pittsburgh. PA. 2003.
32. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M. Jr., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. // J. Am. Chem. Soc. 1995. V.117. P.5179-5197.
33. Cieplak P., Cornell W.D., Bayly C., Kollman P.A. // J. Comput. Chem. 1995. V.16. P.1357-1377.
34. Wang J., Cieplak P., Kollman P.A. // J. Comput. Chem. 2000. V.21 P.1049-1074.
35. Dupradeau F.-Y., Pigache A., Zaffran T., Cieplak P. R.E.D. Version 2.0 User's Manual and Tutorial. Universite' de Picardie Jules Verne. Amiens. France. 2005.
36. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. // J. Comput. Chem. 1993. V.14. P.1347-1363.
37. Case D.A., Darden T.A., Cheatham T.E. III, Simmerling C.L., Wang J., Duke R.E., Luo R., Merz K.M., Wang B., Pearlman D.A., Crowley M., Brozell S., Tsui V., Gohlke H., Mongan J., Hornak V., Cui G., Beroza P., Schafmeister C., Caldwell J.W., Ross W.S., Kollman P.A. AMBER 8. University of California. San Francisco. CA. 2004.
38. Tsui V., Case D.A. // Biopolymers (Nucl. Acid Sci.). 2000. V.56 P.275-291.
39. Draper D.E., Misra V.K. // Nat. Struct. Biol. 1998. V.5. P.927-930.
40. Draper D.E. // Biophys. J. 2008. V.95. P.5489-5495
41. Jorgensen W.L., Chandrasekhar J., Madura J., Klein M.L. // J. Chem. Phys. 1983. V.79 P.926-935.
42. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V.98, P.10089-10092.
43. Izaguirre J.A., Catarello D.P., Wozniak J.M., Skeel R.D. // J. Chem. Phys. 2001. V.114 P.2090-2098.
44. Lu X.-J., Olson W.K. // Nucl. Acids Res. 2003. V.31. P.5108-5121.
45. Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. V.14 P.33-38.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).