Mass spectrometric study of interactions of amino acids with cryoprotectors. Proline and oxyethylated glycerol derivatives

  • V. G. Zobnina B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ
  • O. O. Boryak B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ
  • M. V. Kosevich B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
  • V. V. Chagovets B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ
  • V. V. Orlov B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ
  • V. V. Snegir Institute for Surface Chemistry of the National Academy of Sciences of Ukraine
  • V. A. Pokrovsky Institute for Surface Chemistry of the National Academy of Sciences of Ukraine
  • E. N. Zhivotova National University of Pharmacy
  • A. V. Zhinchenko Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine
  • A. Gomory Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences
Keywords: amino acids, proline, cryoprotectors, oxyethylated glycerol derivatives, alkali metal ions, solvatation, mass spectrometry

Abstract

In the framework of a problem of investigation of the interaction of biopolymers components - amino acids - with cryoprotection compounds on the level of intermolecular complexes a model system comprised of proline (Pro) solution in oxyethylated glycerol oligomers, OEG-5 (Mn) was investigated. Application of a set of mass spectrometric methods with fast atom bombardment, laser desorption/ionization, electrospray ionization (from solutions) allowed us to obtain complementary data on the composition of the ion-solvate shell of amino acid proline in liquid cryoprotection compound OEG-5. A set of protonated associates of proline molecule with the oligomers - Pro·Mn·H+ - observed in the positive ion mass spectra indicated the salvation of the amino acid in OEG-5 solvent. Complexes of the amino acid with oligomers cationized by alkali metal ions were not detected even when the intensity of associates Mn·Na+, Mn·K+ was high, which pointed to a competition between protonated proline and Na+, K+ ions for binding with oligomers of OEG-5. In electrospray mass spectra in the negative ion mode intensity of deprotonated proline peak [Pro-Н]- significantly exceeded that of the protonated form of proline [Pro+Н]+ in the positive ion mode, which indicated domination of the dissociated form of amino acid in solution. A model was proposed, which explained the stabilization of Pro·Mn·H+ complexes by wrapping of the oligomers around a protonated molecule of proline with the formation of a quasi-cyclic structure similar to crown-ethers, in which ether oxygens were turned to the organic cation. A comparison with literature data about poly-ethers - alkali metal ions interaction allowed us to explain a molecular mechanism of the observed competition between organic and inorganic cations for binding with oligomers of OEG-5. A possibility of the existence of triple associates of deprotonated proline with cation complexes Mn·Na+, Mn·K+, which neutral net charge does not permit their mass spectrometric detection, is discussed. Further investigation perspectives consist of theoretical modeling of complexes which include proline, alkali metal ions, and OEG-5 in different charge states.

 

Downloads

Download data is not yet available.

Author Biographies

V. G. Zobnina, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ

47 Lenin Ave., Kharkov 61103, Ukraine

zobnina@ilt.kharkov.ua

 

O. O. Boryak, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ

47 Lenin Ave., Kharkov 61103, Ukraine

zobnina@ilt.kharkov.ua

M. V. Kosevich, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

47 Lenin Ave., Kharkov 61103, Ukraine

zobnina@ilt.kharkov.ua

 

V. V. Chagovets, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ

47 Lenin Ave., Kharkov 61103, Ukraine

zobnina@ilt.kharkov.ua

V. V. Orlov, B.Verkin Institute for Low Temperature Physics and Engineering of the National Academ

47 Lenin Ave., Kharkov 61103, Ukraine

zobnina@ilt.kharkov.ua

V. V. Snegir, Institute for Surface Chemistry of the National Academy of Sciences of Ukraine

17, General Naumov str., 03164, Kiev, Ukraine

 

 

V. A. Pokrovsky, Institute for Surface Chemistry of the National Academy of Sciences of Ukraine

17, General Naumov str., 03164, Kiev, Ukraine

 

 

E. N. Zhivotova, National University of Pharmacy

53, Pushkinskaya str., 61002, Kharkov, Ukraine

A. V. Zhinchenko, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine

23, Pereyaslavskaya str., 61015, Kharkov, Ukraine

A. Gomory, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences

Pusztaszeri str. 59-67, Budapest 1025, Hungary

References

Чеканова В.В. Синтез, токсичность и криопротекторная активность

оксиэтилированных амидов: автореф. дис. на соискание учен. степени канд. биол.

наук.: спец. 03.00.19 «Криобиология» – Х., 1993. – 17с.

Zhivotova E.N. Zinchenko A.V., Kuleshova L.G. et. al. Physical states of aqueous

solutions of oxyethylated glycerol with polymerization degree of n=30 at temperatures

lower than 283 K // CryoLetters. – 2007. – V. 28, № 4. – P. 261-270.

Животова Е.Н., Зинченко А.В., Чеканова В.В. и др. Термический анализ бинарных

систем вода-оксиэтилированный глицерин (степень полимеризацию n=5 и 25) при

температурах ниже 273 K // Доповіді Національной академии наук України. - 2006. –

№9. – C. 74-79.

Лубяный В.Г., Бредихина Л.П., Шраго М.И. Криопротекторная активность

олигомеров ОЭГ в низкотемпературном консервировании эритроцитов //

Криобиология и криомедицина. -1981. – вып. 8. – С. 34-40.

Досон Р., Элиот Д., Эллиот У. и др. Справочник биохимика. - М.: Мир, 1991. – 544 с.

Химическая энциклопедия. М: Большая российская энциклопедия, 1988-1998. Т. 1-5.

Якубке Х.-Д., Ешкайт Х. М.Аминокислоты. Пептиды. Белки. – M.: Мир, 1985. – 456с.

Овчинников Ю.А. Биоорганическая химия. – M.: Просвещение, 1987. – 815c.

Michaux C., Wouters J., Perpete E.A. et. al. Stepwise hydration of protonated proline // The

journal of physical chemistry B letters – 2008. – V. 112. – P. 7702-7705.

McLain S.E., Soper A.K., Terry A.E. et. al. Structure and hydration of L-proline in

aqueous solutions // The Journal of Physical Chemistry B – 2007. – V. 111. P. 4568-4580.

Schobert B., Tschesche H. Unusual solution properties of prоline and its interaction with

proteins // Biochimica et Biophysica Acta – 1978. – V. 541. – P. 270-277.

Калинин Ф.Л., Лобов В.П., Жидков В.А. Справочник по биохимии. – К.: Наукова

думка, 1971. – 1013с.

Миронов П.В., Алаудинова Е.В., Шимова Ю.С. и др. Белки цитоплазмы меристем

почек ели: динамика аминокислотного состава // Химия растительного сырья – 2007.

№. 4. С. 95–100.

Кузьмина Н.А. Основы биотехнологии // http://www.biotechnolog.ru/, 2005

Sofou Р., Elemes Y., Panou-Pomonis E. Synthesis of a praline-rich [60]fullerene peptide

with potential biological activity // Tetrahedron – 2004. – V. 60. – P. 2823-2828.

Cusan C., Da Ros T., Spalluto G. A new multi-charged C60 derivative: synthesis and

biological properties // European Journal of Organic Chemistry – 2002. – V. 9, Issue 17. –

P. 2928-2934.

Kosevich M.V. Low temperature secondary emission mass spectrometry. Cryobiological

applications // European Journal of Mass Spectrometry. – 1998. – Vol. 4 – P. 251-264.

Boryak O.A., Kosevich M.V., Shelkovsky V.S. et. al. Study of frozen solutions of nucleic

acid nitrogen bases by means of low temperature fast-atom bombardment mass

spectrometry // Rapid Communications Mass Spectrometry. – 1996. – V. 10 – P. 197-199.

Косевич М.В., Зобнина В.Г., Боряк О.А. и др. Исследование раствора аминокислоты

валина в кроипротекторе этиленгликоле при низких температурах методом вторичноионной масс-спектрометрии // Масс-спектрометрия. – 2006. – Т. 3 – С. 33-42.

Boryak O.A., Kosevich M.V., Shelkovsky V.S. Mass spectrometric study of liquid

solution of amino acid proline in ethanol at temperatures below 0oC // Proceedings of

Kharkov State University, Biophysical Bulletin – 2000. – V. 488, Issue 1. – P. 44-48.

Косевич М.В., Зобнина В.Г., Животова Е.Н. и др. Масс-спектрометрическое

исследование криопротекторов на основе оксиэтилированных производных

глицерина // Масс-спектрометрия – 2009 – Т. 6, №1– С. 7-20.

Hillenkamp F., Peter-Katalinić J. MALDI MS: A practical guide to instrumentation,

methods and applications. Weinheim: Wiley-VCH, 2007. 346 р.

Garrison B.J., Delcorte A., Zhigilei L.V. et. al. Big molecule ejection – SIMS vs. MALDI

// Applied Surface Science – 2003. – V. 203-204. – P. 69-71.

Wang B.H., Dreisewerd K., Bahr U. et. al. Gas-phase cationization and protonation of

neutrals generated by matrix-assisted laser desorption // Journal of the American Society for

Mass Spectrometry – 1993. – V. 4, Issue 5. – Р. 393-398.

Hanton S.D., Owens K.G., Chavez-Eng C. et. al. Updating evidence for cationization of

polymers in the gas phase during matrix- assisted laser desorption/ionization // European

Journal of Mass Spectrometry – 2005. – V. 11, Issue 1. – P. 23–30.

Gidden J., Wyttenbach Th., Batka J.J. et. al. Folding energetics and dynamics of

macromolecules in the gas phase: alkali ion-cationized poly(ethylene terephthalate)

oligomers // Journal of the American Chemical Society – 1999. – V. 121. – P. 1421-1422.

Gidden J., Wyttenbach Th., Batka J.J. et. al. Poly (ethylene terephthalate) oligomers

cationized by alkali ions: structures, energetics, and their effect on mass spectra and the matrix-assisted laser desorption/ionization process // Journal of The American Society for

Mass Spectrometry – 1999. – V. 10. – P. 883–895.

Заикин В.Г. Масс-спектрометрия синтетических полимеров – М.: ВМСО, 2009. –

с.

Wyttenbach Th., Gert von Helden, Bowers M. T. Conformations of alkali ion cationized

polyethers in the gas phase: polyethylene glycol and bis[(benzo-15-crown-5)-15-ylmethyl]

pimelate // International Journal of Mass Spectrometry and Ion Processes – 1997. – V.

/166. – P. 377-390.

Shishkina S.V., Shishkin O.V., Grygorash R.Ya. et. al. Molecular and crystal structure of

crown ethers containing biphenyl fragment // Journal of Molecular Structure – 2007. – V.

, Issues 1-3. – P. 199-208.

Dan Qian Xu, Shu Ping Luo, Yi Feng Wang et. al. Organocatalysts wrapped around by

poly(ethylene glycol)s (PEGs): a unique host-guest system for asymmetric // Chem.

Commun. – 2007. – Р. 4393 – 4395.

Gerbaux P., De Winter J., Cornil D. et. al. Noncovalent interactions between ([18]crown6)-tetracarboxylic acid and аmino acids: electrospray-ionization mass spectrometry

investigation of the chiral-recognition processes // Chemistry - A European Journal – 2008.

– V. 14. – P. 11039-11049.

Liao X.C., Wang X.W., Tao J.C. Liquid membrane transport behavior of functional

substituted crown ethers for amino acids // Chinese Chemical Letters – 2002. – V. 13, Issue

– P. 1003-1004.

Buschmann H-J., Schollmeyer E., Mutihac L. The complexation of amino acids by crown

ethers and cryptands in methanol // Journal of Inclusion Phenomena and Macrocyclic

Chemistry –1998. – V. 30, Issue 1. – P. 21-28

Tatsuya O., Katsutoshi I., Kazuya U. et. al. Amino acid dominant factors affecting

extraction behavior of amino compounds by a calix[6]arene carboxylic acid derivatives //

Analytica Chimica Acta – 2004. – V. 509, Issue 2. – P. 137-144.

Furusawa K. Obata C., Matsumura H. et. al. Bilayer membranes of amphiphilic crown

ethers with amino acid residue // Chemistry Letters – 1990. – V. 19, Issue. 7. – P.1047.

Snow J.T. Peptides. Derivatized amino acids. California, 1988.

Published
2009-06-03
Cited
How to Cite
Zobnina, V. G., Boryak, O. O., Kosevich, M. V., Chagovets, V. V., Orlov, V. V., Snegir, V. V., Pokrovsky, V. A., Zhivotova, E. N., Zhinchenko, A. V., & Gomory, A. (2009). Mass spectrometric study of interactions of amino acids with cryoprotectors. Proline and oxyethylated glycerol derivatives. Biophysical Bulletin, 1(22), 103-115. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/8169
Section
Methods of biophysical investigations