Mass spectrometric study of interactions of amino acids with cryoprotectors. Proline and oxyethylated glycerol derivatives
Abstract
In the framework of a problem of investigation of the interaction of biopolymers components - amino acids - with cryoprotection compounds on the level of intermolecular complexes a model system comprised of proline (Pro) solution in oxyethylated glycerol oligomers, OEG-5 (Mn) was investigated. Application of a set of mass spectrometric methods with fast atom bombardment, laser desorption/ionization, electrospray ionization (from solutions) allowed us to obtain complementary data on the composition of the ion-solvate shell of amino acid proline in liquid cryoprotection compound OEG-5. A set of protonated associates of proline molecule with the oligomers - Pro·Mn·H+ - observed in the positive ion mass spectra indicated the salvation of the amino acid in OEG-5 solvent. Complexes of the amino acid with oligomers cationized by alkali metal ions were not detected even when the intensity of associates Mn·Na+, Mn·K+ was high, which pointed to a competition between protonated proline and Na+, K+ ions for binding with oligomers of OEG-5. In electrospray mass spectra in the negative ion mode intensity of deprotonated proline peak [Pro-Н]- significantly exceeded that of the protonated form of proline [Pro+Н]+ in the positive ion mode, which indicated domination of the dissociated form of amino acid in solution. A model was proposed, which explained the stabilization of Pro·Mn·H+ complexes by wrapping of the oligomers around a protonated molecule of proline with the formation of a quasi-cyclic structure similar to crown-ethers, in which ether oxygens were turned to the organic cation. A comparison with literature data about poly-ethers - alkali metal ions interaction allowed us to explain a molecular mechanism of the observed competition between organic and inorganic cations for binding with oligomers of OEG-5. A possibility of the existence of triple associates of deprotonated proline with cation complexes Mn·Na+, Mn·K+, which neutral net charge does not permit their mass spectrometric detection, is discussed. Further investigation perspectives consist of theoretical modeling of complexes which include proline, alkali metal ions, and OEG-5 in different charge states.
Downloads
References
Чеканова В.В. Синтез, токсичность и криопротекторная активность
оксиэтилированных амидов: автореф. дис. на соискание учен. степени канд. биол.
наук.: спец. 03.00.19 «Криобиология» – Х., 1993. – 17с.
Zhivotova E.N. Zinchenko A.V., Kuleshova L.G. et. al. Physical states of aqueous
solutions of oxyethylated glycerol with polymerization degree of n=30 at temperatures
lower than 283 K // CryoLetters. – 2007. – V. 28, № 4. – P. 261-270.
Животова Е.Н., Зинченко А.В., Чеканова В.В. и др. Термический анализ бинарных
систем вода-оксиэтилированный глицерин (степень полимеризацию n=5 и 25) при
температурах ниже 273 K // Доповіді Національной академии наук України. - 2006. –
№9. – C. 74-79.
Лубяный В.Г., Бредихина Л.П., Шраго М.И. Криопротекторная активность
олигомеров ОЭГ в низкотемпературном консервировании эритроцитов //
Криобиология и криомедицина. -1981. – вып. 8. – С. 34-40.
Досон Р., Элиот Д., Эллиот У. и др. Справочник биохимика. - М.: Мир, 1991. – 544 с.
Химическая энциклопедия. М: Большая российская энциклопедия, 1988-1998. Т. 1-5.
Якубке Х.-Д., Ешкайт Х. М.Аминокислоты. Пептиды. Белки. – M.: Мир, 1985. – 456с.
Овчинников Ю.А. Биоорганическая химия. – M.: Просвещение, 1987. – 815c.
Michaux C., Wouters J., Perpete E.A. et. al. Stepwise hydration of protonated proline // The
journal of physical chemistry B letters – 2008. – V. 112. – P. 7702-7705.
McLain S.E., Soper A.K., Terry A.E. et. al. Structure and hydration of L-proline in
aqueous solutions // The Journal of Physical Chemistry B – 2007. – V. 111. P. 4568-4580.
Schobert B., Tschesche H. Unusual solution properties of prоline and its interaction with
proteins // Biochimica et Biophysica Acta – 1978. – V. 541. – P. 270-277.
Калинин Ф.Л., Лобов В.П., Жидков В.А. Справочник по биохимии. – К.: Наукова
думка, 1971. – 1013с.
Миронов П.В., Алаудинова Е.В., Шимова Ю.С. и др. Белки цитоплазмы меристем
почек ели: динамика аминокислотного состава // Химия растительного сырья – 2007.
№. 4. С. 95–100.
Кузьмина Н.А. Основы биотехнологии // http://www.biotechnolog.ru/, 2005
Sofou Р., Elemes Y., Panou-Pomonis E. Synthesis of a praline-rich [60]fullerene peptide
with potential biological activity // Tetrahedron – 2004. – V. 60. – P. 2823-2828.
Cusan C., Da Ros T., Spalluto G. A new multi-charged C60 derivative: synthesis and
biological properties // European Journal of Organic Chemistry – 2002. – V. 9, Issue 17. –
P. 2928-2934.
Kosevich M.V. Low temperature secondary emission mass spectrometry. Cryobiological
applications // European Journal of Mass Spectrometry. – 1998. – Vol. 4 – P. 251-264.
Boryak O.A., Kosevich M.V., Shelkovsky V.S. et. al. Study of frozen solutions of nucleic
acid nitrogen bases by means of low temperature fast-atom bombardment mass
spectrometry // Rapid Communications Mass Spectrometry. – 1996. – V. 10 – P. 197-199.
Косевич М.В., Зобнина В.Г., Боряк О.А. и др. Исследование раствора аминокислоты
валина в кроипротекторе этиленгликоле при низких температурах методом вторичноионной масс-спектрометрии // Масс-спектрометрия. – 2006. – Т. 3 – С. 33-42.
Boryak O.A., Kosevich M.V., Shelkovsky V.S. Mass spectrometric study of liquid
solution of amino acid proline in ethanol at temperatures below 0oC // Proceedings of
Kharkov State University, Biophysical Bulletin – 2000. – V. 488, Issue 1. – P. 44-48.
Косевич М.В., Зобнина В.Г., Животова Е.Н. и др. Масс-спектрометрическое
исследование криопротекторов на основе оксиэтилированных производных
глицерина // Масс-спектрометрия – 2009 – Т. 6, №1– С. 7-20.
Hillenkamp F., Peter-Katalinić J. MALDI MS: A practical guide to instrumentation,
methods and applications. Weinheim: Wiley-VCH, 2007. 346 р.
Garrison B.J., Delcorte A., Zhigilei L.V. et. al. Big molecule ejection – SIMS vs. MALDI
// Applied Surface Science – 2003. – V. 203-204. – P. 69-71.
Wang B.H., Dreisewerd K., Bahr U. et. al. Gas-phase cationization and protonation of
neutrals generated by matrix-assisted laser desorption // Journal of the American Society for
Mass Spectrometry – 1993. – V. 4, Issue 5. – Р. 393-398.
Hanton S.D., Owens K.G., Chavez-Eng C. et. al. Updating evidence for cationization of
polymers in the gas phase during matrix- assisted laser desorption/ionization // European
Journal of Mass Spectrometry – 2005. – V. 11, Issue 1. – P. 23–30.
Gidden J., Wyttenbach Th., Batka J.J. et. al. Folding energetics and dynamics of
macromolecules in the gas phase: alkali ion-cationized poly(ethylene terephthalate)
oligomers // Journal of the American Chemical Society – 1999. – V. 121. – P. 1421-1422.
Gidden J., Wyttenbach Th., Batka J.J. et. al. Poly (ethylene terephthalate) oligomers
cationized by alkali ions: structures, energetics, and their effect on mass spectra and the matrix-assisted laser desorption/ionization process // Journal of The American Society for
Mass Spectrometry – 1999. – V. 10. – P. 883–895.
Заикин В.Г. Масс-спектрометрия синтетических полимеров – М.: ВМСО, 2009. –
с.
Wyttenbach Th., Gert von Helden, Bowers M. T. Conformations of alkali ion cationized
polyethers in the gas phase: polyethylene glycol and bis[(benzo-15-crown-5)-15-ylmethyl]
pimelate // International Journal of Mass Spectrometry and Ion Processes – 1997. – V.
/166. – P. 377-390.
Shishkina S.V., Shishkin O.V., Grygorash R.Ya. et. al. Molecular and crystal structure of
crown ethers containing biphenyl fragment // Journal of Molecular Structure – 2007. – V.
, Issues 1-3. – P. 199-208.
Dan Qian Xu, Shu Ping Luo, Yi Feng Wang et. al. Organocatalysts wrapped around by
poly(ethylene glycol)s (PEGs): a unique host-guest system for asymmetric // Chem.
Commun. – 2007. – Р. 4393 – 4395.
Gerbaux P., De Winter J., Cornil D. et. al. Noncovalent interactions between ([18]crown6)-tetracarboxylic acid and аmino acids: electrospray-ionization mass spectrometry
investigation of the chiral-recognition processes // Chemistry - A European Journal – 2008.
– V. 14. – P. 11039-11049.
Liao X.C., Wang X.W., Tao J.C. Liquid membrane transport behavior of functional
substituted crown ethers for amino acids // Chinese Chemical Letters – 2002. – V. 13, Issue
– P. 1003-1004.
Buschmann H-J., Schollmeyer E., Mutihac L. The complexation of amino acids by crown
ethers and cryptands in methanol // Journal of Inclusion Phenomena and Macrocyclic
Chemistry –1998. – V. 30, Issue 1. – P. 21-28
Tatsuya O., Katsutoshi I., Kazuya U. et. al. Amino acid dominant factors affecting
extraction behavior of amino compounds by a calix[6]arene carboxylic acid derivatives //
Analytica Chimica Acta – 2004. – V. 509, Issue 2. – P. 137-144.
Furusawa K. Obata C., Matsumura H. et. al. Bilayer membranes of amphiphilic crown
ethers with amino acid residue // Chemistry Letters – 1990. – V. 19, Issue. 7. – P.1047.
Snow J.T. Peptides. Derivatized amino acids. California, 1988.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).