Mechanism of thermal destruction on nucleic acids

  • A. V. Philipskiy Institute of Radiophysics and Electronics A. Ya. Usikova NAS of Ukraine
Keywords: DNA, polynucleotides, thermal destruction, calorimetry

Abstract

The thermal stability of polynucleotides (polyA, polyG, polyC, polyU and natural DNA), and their structural components (nucleotides, nucleosides, and deoxyribose) were studied by a method of differential scanning microcalorimetry. The dependences of heat flow on temperature for studied compounds with individual features in the temperature range from 20 up to 4000 С have been obtained. All samples give the exothermic peaks on the DSC curves at temperatures higher than 2000 С that correspond to processes of nonreversible thermal destructions of the structure. The temperatures and the effective heat of the thermal destruction for all samples were determined. The obtained data show that investigated polynucleotides have different thermal stability indicating a difference in binding energies among which the poly G is the most stable and DNA is less stable. The calorimetric analysis of polynucleotide structural components has shown that the exothermal character of nucleic acids destruction is determined by the process of D-ribose destruction. Based on our results and the literary source the mechanism of thermal destruction of the polynucleotide in solid-state was proposed. The initial reaction is glycosidic bond cleavage with hydrogen transfer from a sugar moiety to the nitrogen base. In consequence, the C-O bond between sugar and phosphate becomes unstable and breakdown.

Downloads

Download data is not yet available.

Author Biography

A. V. Philipskiy, Institute of Radiophysics and Electronics A. Ya. Usikova NAS of Ukraine

 12Acad. Proskura str.,  Kharkov, 61085, Ukraine

References

Marguet E., Forterre P. DNA stability at temperatures typical for hyperthermophiles. //

Nucl. Acid Res. 1994. V. 22. P. 1681-1686.

Lindhal T. Instability and decay of the primary structure of DNA. // Nature. 1993. V.

P. 709-715.

Sidney W. F., Doxe K. // Molecular Evolution and the Origin of Life, Revised ed. 1977.

Гасан А.И., Малеев В.Я., Филипский А.В. Исследование термической устойчивости

первичной структуры нуклеиновых кислот. // Вісник ХДУ, №568, Біофізичний

Вісник. 2002. вип. 2. Р. 20 – 24.

Kyoung J. P., Won J. Characterization of DNA/Poly (ethylene imine) Electrolyte

Membranes. // Macromolecular Research. 2007. V. 15. №. 6. P. 581-586.

Коршак В. В. // Термостойкие полимеры. 1969. М. Наука. 408 с.

Ohnishi A., Kato K., Takagi E. Curie-Point Pyrolysis of Cellulose. // Polymer Journal.

V. 4. P. 431-437.

Yaylayan V. A. Precursors, Formation and Determination of Furan in Food. // Journal OF

Consumer Protection and Food Safety. 2005. V. 1. P. 5-9.

Gross M. L., Lyon P. A., Dasgupta A., Gupta N. K. Mass spectral studies of probe

pyrolysis products of intact oligoribonucleotides. // Nucleic Acids Res. 1978. V. 5. № 8.

P. 2695-2704.

Yang J. Håkansson K. Fragmentation of Oligoribonucleotides from Gas-Phase IonElectron Reactions. // J Am Soc Mass Spectrom. 2006. V. 17. P. 1369–1375.

Puzo G., Wiebers J.L. Identification of modified nucleosides in intact transfer ribonucleic

acid by pyrolysis-electron impact-collisional activation mass spectrometry// Nucleic

Acids Research. 1981. V. 9. P. 4655–4667.

Wan K. X., Gross M. L. Fragmentation mechanisms of oligodeoxynucleotides: effects of

replacing phosphates with methylphosphonates and thymines with other bases in T-rich

sequences. // J Am Soc Mass Spectrom. 2001. V. 12. P. 580–589.

Strittmatter E. F., Schnier P. D., Klassen J. S., Williams E. R. Dissociation energies of

deoxyribose nucleotide dimer anions measured using blackbody infrared radiative

dissociation. // J Am Soc Mass Spectrom. 1999. V. 10. P. 1095–1104.

Klassen J. S., Schnier P. D., Williams E. R. Blackbody Infrared Radiative Dissociation of

Oligonucleotide Anions// J Am Soc Mass Spectrom. 1998. V. 9. P. 1117–1124.

Olafsson P. G., Bryan A. M., Lau K. A DSC-TLC analysis of thermolysis reactions

involving 2'-deoxynucleosides. // J. of Thermal Analysis. 1977. V. 11. P. 377—385.

Olafsson P. G., Bryan A. M. Thermal analysis of 5-halo-2'-deoxynucleosides. // Journal

of Thermal Analysis. 1977. V. 11. P. 359—376.

Published
2009-06-03
Cited
How to Cite
Philipskiy, A. V. (2009). Mechanism of thermal destruction on nucleic acids. Biophysical Bulletin, 1(22), 98-102. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/8168
Section
Action of physical agents on biological objects