The influence of random branch lengths of dendrites on the passive electrical structure of the neurons: model study

  • A. V. Kaspirzhnyy Dniepropetrovsk National University
Keywords: electrical structure, stochastic model, dendritic arborization, computer modeling, NEURON


The influence of random branch length of dendrites on the electrotonic (passive electrical) structure is shown by the computer models of the passive stochastic arborization. The electrotonic structure of models was computed as the arborization of somatopetal current transfer effectiveness profiles. The dendrites are considered as passive cables with zero leakage at the tip ("sealed-end" boundary condition). The models with the uniform in the interval and normal distribution of branch lengths showed that the distribution of the current transfer effectiveness becomes displaced to the side of smaller values. The criterion of resolving the dendritic branches by the effectiveness of somatopetal current transfer was described. The model of asymmetrical stochastic arborization showed both: the possibility to use this criterion to resolve the groups of branches and the characteristic changes of resolution conditions caused by changes of membrane resistivity.



Download data is not yet available.

Author Biography

A. V. Kaspirzhnyy, Dniepropetrovsk National University

72 Gagarina av., Dniepropetrovsk, 49050, Ukraine



Hillman D.E. // In book: “The Neurosciences: Fourth Study Program.” –Cambridge, MA., MIT Press, 1979,

Chap.27, P.477–498.

Burke R.E., Marks W.M., Ulfhake B. // J. Neurosci. 1992. V.12(6). P. 2403–2416.

Ascoli G.A. // Anat. Rec. 1999. V.257(6). P.195–207.

Ascoli G.A., Krichmar J.L. et al. // Phil. Trans. R. Soc. Lond. B. 2001. V.356, P.1131–1145.

Ascoli G.A. // Network: Comput. Neural Syst. 2002. V.13. P.247–260.

Бондаренко Я.С. // Мат. маш. И сист. 2006. Т.1. С.13–27.

Donohue D.E., Ascoli G.A. // PLoS Comput. Biol. 2008. V.4(6). P.1–15.

Barrett J., Crill W. // J. Physiol. 1974. V.239. P.325–345.

Bras H., Gogan P., Tyč-Dumont S. // Neuroscience. 1987. V.22(3). P.947–970.

Hines M.L., Carnevale N.T. // Neural Comput. 1997. V.9. P.1179–1209.

Korogod S.M., Bras H. et al. // Eur. J. Neurosci. 1994. V.6. P.1517–1527.

Korogod S.M., Kulagina I.B. et al. // J. Comp. Neurol. 2000. V.422. P.18–34.

Jack J.J.B., Noble D., Tsien R.W. // Electric Current Flow in Excitable Cells. “Clarendon”, OXFORD. 1975

Гмурман В.Е. / Теория вероятности и математическая статистика. М., “Высшая Школа”, 1972, 184с.

Браунли К.А. / Статистическая теория и методология в науке и технике. М., “Наука”", 1977, 408с.

Sholl D.A. // J. Anat. 1953. V.87. P.387–406.

Korogod S.M., Kaspirzhny A.V. // Biol. Cybern. 2008. V.98(2). P.87–100.

Gerstner W., Kistler W.M. “Spiking Neuron Models: Single Neurons, Populations, Plasticity”: Cambridge University Press, 2002.-494p.

Magee J.C. Johnston D. // J. Physiol. 1995. V.487. 67–90.

Hoffman D.A. Magee J.C. et al. // Nature. 1997. V.387. P.869–875.

Cook E.P., Johnston D. // J.Neurophysiol. 1997. V.78. P.2116–2128.

Korogod S.M., Kulagina I.B. // Biol. Cyb. 1998. V.79. P.231–240.

Emri Z.S., Antal K. et al. // Neurosci. 2001. V.104(4). P.1013–1026.

Shepherd G.M., Mirsky J.S. et al. // TINS 1998. V.21(11). P.460–468.

Horcholle-Bossavit G., Gogan P. et al. // J. Neurosci. Methods. 2000. V.95. P.83–93.

Kaspirzhny A.V., Gogan P. et al. // Network: Comput. Neural Syst. 2002. V.13. P.357–380.

Каспиржный А.В. // Біофізичний вісник. 2007. Т.19(2). С.80–86.

Paré D., Shink E. et al. // J. Neurophysiol. 1998. V.79. P.1450–1460.

How to Cite
Kaspirzhnyy, A. V. (2009). The influence of random branch lengths of dendrites on the passive electrical structure of the neurons: model study. Biophysical Bulletin, 1(22), 68-79. Retrieved from
Biophysics of complex systems