Response of exfoliated human buccal epithelium cells to combined gamma radiation, microwaves, and magnetic field exposure estimated by changes in chromatin condensation and cell membrane permeability

  • K. А. Kuznetsov V.N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv 61022, Ukraine
  • О. Т. Nikolov V.N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv 61022, Ukraine
  • Y. G. Shckorbatov V.N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv 61022, Ukraine
Keywords: Heterochromatin, cell stress, cell damage, hormesis, static magnetic field, electromagnetic field

Abstract

Modulation of the biological effects produced by ionizing radiation (IR) using microwave and magnetic fields has important theoretical and practical applications. Response of human buccal epithelium cells to different physical agents (single and combined exposure to 0.5–5 Gy γ-radiation (60Co); microwaves with the frequency of 36.64 GHz and power densities of 0.1 and 1 W/m2, and static magnetic field with the intensity of 25 mT) has been investigated. The stress response of the cells was evaluated by counting heterochromatin granules quantity (HGQ) in the cell nuclei stained with orcein. Membrane permeability was assessed by the percentage of cells stained with indigocarmine (cells with damaged membrane). The increase of heterochromatin granules quantity (HGQ), i.e. chromatin condensation was detected at the doses of 2 Gy and higher. Changes in the cell membrane permeability to indigocarmine expressed the threshold effect. Membrane permeability reached the threshold at the doses of 2–3 Gy for the cells of different donors and did not change with the increase of the dose of γ-radiation. Cells obtained from different donors revealed some individual peculiarities in their reaction to γ-radiation. The static magnetic field and microwaves applied before or after γ-radiation decreased its impact, as revealed by means of HGQ assessment.

Downloads

Download data is not yet available.

References

1. Low dose effects of ionizing radiation on normal tissue stem cells / K. Manda, J. Kavanagh, B. Dajana [et al.]. // Rev. Mutat. Res. – 2014. – V. 761. – P. 6–14.

2. Non-targeted effects of ionizing radiation–implications for low dose risk / M. Kadhim, S. Salomaa, E. Wright Dajana [et al.]. // Mutat. Res. – 2013. – V. 752. – No 1. – P. 84–98.

3. Review and evaluation of updated research on the health effects associated with low-dose ionising radiation / L. Dauer, A. Brooks, D. Hoel [et al.]. // Radiation Protection Dosimetry. – 2010. – V. 140. – No 2. – P. 103–136.

4. γH2AX responses in human buccal cells exposed to ionizing radiation / M. Siddiqui, M. Francois, M. Fenech, W. Leifert. // Cytometry. – 2014. – V. 87, part A. – No 4. – P. 296-308.

5. Takahashi A. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat / A. Takahashi, T. Ohnishi. // J. Radiat. Res. – 2009. – V.50. – No 5. – P. 385–393.

6. Effect of low doses (5-40 cGy) of gamma irradiation on lifespan and stress-related genes expression profile in Drosophila melanogaster / S. Zhikrevetskaya, D. Peregudova, A. Danilov [et al.]. // PLoS ONE. – 2015. – V. 10. – No 8. – P. 1-19.

7. Cancer and radiation therapy: current advances and future directions / R. Baskar, K.A. Lee, R. Yeo, K.-W. Yeoh // Int. J. Med. Sci. – 2012. – V.9. – No 3. – P. 193–199.

8. Could radiotherapy effectiveness be enhanced by electromagnetic field treatment? / F. Artacho-Cordón, M. Salinas-Asensio, I. Calvente [et al.]. // Int. J. Mol. Sci. – 2013. – V.14. – No 7. – P. 14974–14995.

9. Combined exposure of ELF magnetic fields and X-rays increased mutant yields compared with X-rays alone in pTN89 plasmids/ S.Koyama, T. Nakahara, S. Tomonori, K. Yoshiki // Journal of Radiation Research. – 2005. – V. 6. – No 2. – P. 257–264.

10. Induction of adaptive response: Pre-exposure of mice to 900 MHz radiofrequency fields reduces hematopoietic damage caused by subsequent exposure to ionising radiation / Y. Cao, Q. Xu, Z. Jin [et al.]. // Int. J. Radiat. Biol. – 2011. – V. 87. – No 7. – P. 720–728.

11. Ispol'zovanie EMI KVCh kak korregirujushhego faktora narushenij v proteazno-antiproteaznoj systeme pri dejstvii ionizirujushhego izluchenija / Ju. V. Paljonaja, V. Z. Harchenko, N. A. Temur'janc, E. N. Chujan. // Uchenye zapiski Tavricheskogo nacional'nogo universiteta im. V. I. Vernadskogo.Serija «Biologija, himija». – 2006. – V. 19. – No4. – P. 167–172.

12. Blank M. Electromagnetic fields stress living cells / M. Blank, R. Goodman. // Pathophysiology. – 2009. – V.16. – No 2–3. – P. 71–78.

13. Hardel L. Epidemiological evidence for an association between use of wireless phones and tumor diseases / L. Hardel, M. Carlberg, K. Mild. // Pathophysiology. – 2009. – V.16. – No 2–3. – P. 113–122.

14. Pesnya D. S. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test / D. S. Pesnya, A. V. Romanovsky. // Mutation Research. – 2013. – V.750. – No 1–2. – P. 27–33.

15. Effect of whole-body 1800MHz GSM-like microwave exposure on testicular steroidogenesis and histology in mice / Z. Forgacs, Z. Somosy, G. Kubinyi [et al.]. // Reproductive Toxicology. – 2006. – V.22. – No 1. – P. 111–117.

16. Kwee S. Changes in cell proliferation due to environmental non-ionizing radiation 2. Microwave radiation / S. Kwee, P. Raskmark. // Bioelectrochemistry and Bioenergetics. – 1998. – V.44. – No 2. – P. 251–255.

17. Chromatin in the Nuclear Landscape / D. Beck, R. Bonasio, S. Kaneko [et al.]. // Cold Spring Harb. Symp. Quant Biol. – 2010. – V.75. – P. 11–22.

18. Shckorbatov Y. The state of chromatin as an integrative indicator of cell stress. / Y. Shckorbatov// New Developments in Chromatin Research/ Nova Science Publishers, Inc.; [editors: Neil M. Simpson and Valerie J. Stewart]. – 2012. – P. 123–144.

19. Effects of exogenous electromagnetic fields on a simplified ion channel model / E. Cagni, D. Remondini, P. Mesirca [et al.]. // J. Biol. Phys. – 2007. – V.33. – No 3. – P. 183–194.

20. Vliyanie mikrovolnovogo izlucheniya na chasotah mobil’noi svyaziiseti WIMAX na pronicaemost’ membran kletok bukkal’nogo epiteliya cheloveka / G. B. Skamrova, M. P. Evstigneev, A. O. Lantushenko [et al.]. // Uchenye zapiski Tavricheskogo nacional'nogo universiteta im. V. I. Vernadskogo, Serija «Biologija, himija». – 2011. – V. 24 (63). –No 4. – P. 282–291.

21. The effects of microwave radiation and weak magnetic field on state of pea (Pisum sativum L.) cell membrane and nuclei / O. S. Pasiuga, V. N. Pasiuga, S. S. Ryabuha, Y. G. Shckorbatov. // Bulletin of Kharkiv National Agrarian University, Biology series. – 2014. – V. 32. – No 2. – P. 38–45.

22. Presman A. S. Electromagnetic fields and life / Presman. – New York: Plenum Press, 1970. – 336 p. – (Springer Science+Business).

23. On age-related changes of cell membrane permeability in human buccal epithelium cells / Y. G.Shckorbatov, V. G. Shakhbazov, A. M. Bogoslavsky, A. O. Rudenko. // Mech. Ageing Develop. – 1995. – V.83. – No 2. – P. 87–90.

24. Henley E. Radiation Chemistry / E. Henley, E. Johnson. – Moscow: Atomizdat, 1974. – 416 p. – (Washington University Press, 1969).

25. The effect of ionizing radiation in combination with static magnetic field and microwave radiation on chromatin state in isolated human buccal epithelium cells / K. Kuznetsov, D. Miroshnik, O. Nikolov, Y. Shckorbatov. // Bulletin of Lviv University, Biology series. – 2014. – No 68. – P. 197–205.

26. Effects of homogeneous and inhomogeneous static magnetic fields combined with gamma radiation on DNA and DNA repair / G. Kubinyi, Z. Zeitler, G. Thuróczy [et al.]. // Bioelectromagnetics. – 2010. – V. 31. – No 6. – P. 488–494.

27. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells / L. Teodori, A. Giovanetti, M. Albertini [et al.]. // J Radiat Res. – 2014. – V. 55. – No 2. – P. 218–227.

28. Increase in X-Ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-kB-inhibited cells/ G.Ding, H. Yaguchi, M. Yoshida, J. Miyakoshi. // Biochemical and Biophysical Research Communications. – 2000. – V.276. – No 1. – P. 238–243.

29. Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression / Y. Jin, G. Kang, J. Lee [et al.]. // Int J Radiat Biol. – 2012. – V. 88. – No 4. – P. 374–380.

30. Effects of 900-MHz microwave radiation on γ-ray-induced damage to mouse hematopoietic system / Y. Cao, Q. Xu, Z. Jin [et al.]. // Journal of Toxicology and Environmental Health. – 2010. – V.73. –No 7. – P. 507 –513.

31. Influence of 1.8-GHz (GSM) radiofrequency radiation (RFR) on DNA damage and repair induced by X-rays in human leukocytes in vitro / C. Zhijian, L. Xiaoxue, L. Yezhen [et al.]. // Mutat Res. – 2009. – V. 677. – No 1. – P. 100–104.

32. Effects of modulated microwave radiation at cellular telephone frequency (1.95 GHz) on X-ray-induced chromosome aberrations in human lymphocytes in vitro / L. Manti, H. Braselmann, M. Calabrese [et al.]. // Radiation Research. – 2008. – V. 169. – No 5. – P. 575–583.
Cited
How to Cite
KuznetsovK. А., NikolovО. Т., & Shckorbatov, Y. G. (1). Response of exfoliated human buccal epithelium cells to combined gamma radiation, microwaves, and magnetic field exposure estimated by changes in chromatin condensation and cell membrane permeability. Biophysical Bulletin, 2(36), 19-26. https://doi.org/10.26565/2075-3810-2016-36-03
Section
Action of physical agents on biological objects