Concerning the mechanisms of influence of redox-active nanoparticles based on rare-earth elements on the redox-processes in mitochondria

  • K. A. Averchenko Інститут сцинтиляційних матеріалів НАН України
  • N. S. Kavok Інститут сцинтиляційних матеріалів НАН України
  • S. L. Yefimova Інститут сцинтиляційних матеріалів НАН України
Keywords: redox-active nanoparticles, mitochondria, reactive oxygen species, mechanisms

Abstract

Using the kinetic computation model, which demonstrates the dependence of generation of reactive oxygen species (ROS) by complexes I and III of mitochondrion respiration chain on the values of mitochondrial potential, pH of matrix, presence of different respiratory substrates and inhibitors, and data obtained experimentally, the basic mechanisms of the influence of nanoparticles (NPs) on the basis of rare earth elements on the bioenergetic processes in the mitochondria have been proposed. The mitochondrial potential, the processes of respiration and oxidative phosphorylation, as well as the ability of NPs to have an influence on the generation of ROS in the respiratory chain of mitochondria have been investigated. We propose two main mechanisms of the influence of the redox-active NPs based on the rare earth elements on the redox-processes in the mitochondria: the first mechanism involves the inhibition of electron transport and activation of the formation of superoxide and hydrogen peroxide, the second - integration of NPs into the electron-transport processes in the mitochondria as donors or acceptors of electrons

Downloads

Download data is not yet available.

References

Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells / A. A. Alshatwi, P. V. Subbarayan, E. Ramesh [et al.] // Food Addit. Contam. Part A: Chem. Anal. Control. Expo. Risk Assess. – 2013. – V. 30, № 1. – Р. 1–10.

Superoxide production by cytochrome bc1 complex: a mathematical model / F. Guillaud, S. Dröse, A. Kowald [et al.] // Biochim Biophys Acta. – 2014. – V. 1837, № 10. – Р. 1643-52.

Bistability of mitochondrial respiration underlies paradoxical reactive oxygen species generation induced by anoxia / V.A. Selivanov, T.V. Votyakova, J.A. Zeak [et al.] // PLoS Comput. Biol. – 2009. – V. 5: e1000619

Reactive oxygen species production by forward and reverse electron fluxes in the mitochondrial respiratory chain // V.A. Selivanov, T.V. Votyakova, V.N. Pivtoraiko [et al.] // PLoS Comput. Biol. – 2011. – V. 7: e1001115.

Markevich N.I. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain / N.I. Markevich, J.B. Hoek // Biochimica et Biophysica Acta. – 2015. – V. 1847. – P. 656–679.

A model of O2-generation in the complex III of the electron transport chain / O.V. Demin, B.N. Kholodenko, V.P. Skulachev // Mol. Cell. Biochem. – 1998. – V. 184. – P. 21–33.

Orii Y. Oxidation process of bovine heart ubiquinol-cytochrome c reductaseas studied by stopped-flow rapid-scan spectrophotometry and simulations based on the mechanistic Q cycle model / Y. Orii, T. Miki // J. Biol. Chem. – 1997. – V. 272. – P. 17594–17604

A computational model of reactive oxygen species and redox balance in cardiac mitochondria / L.D. Gauthier, J.L. Greenstein, S. Cortassa [et al.] // Biophys. J. – 2013. – V. 105. – P. 1045–1056.

Analysis of the kinetics and bistabilityof ubiquinol:cytochrome c oxidoreductase / J.N. Bazil, K.C. Vinnakota, F. Wu [et al.] // Biophys. J. – 2013. – V. 105. – P. 343–355.

Korzeniewski B.A model of oxidative phosphorylation in mammalianskeletal muscle / B. Korzeniewski, J.A. Zoladz // Biophys. Chem. – 2001. – V. 92. – P. 17–34.

Beard D.A. A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation / D.A. Beard // PLoS Comput. Biol. – 2005. – V. 1: e36.

The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle / C.L. Quinlan, A.A. Gerencser, J.R. Treberg [et al.] // J. Biol. Chem. – 2011. – V. 286. – P. 31361–31372.

Drose S. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex / S. Drose, U. Brandt // J. Biol. Chem. – 2008. V. 283. – P. 21649–21654.

Kussmaul L. The mechanism of superoxide production by NADH:ubiquinoneoxidoreductase (complex I) from bovine heart mitochondria / L. Kussmaul, J. Hirst // Proc. Natl.Acad. Sci. U. S. A. – 2006. – V. 103. – P. 7607–7612.

Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits / A.R. Crofts, S. Lhee, S.B. Crofts [et al] // Biochim. Biophys. Acta. – 2006. – V. 1757 (8). – P. 1019–1034.

Themechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1complex / A.R. Crofts, S. Hong, C. Wilson, [et al.] // Biochim. Biophys. Acta. – 2013. – V. 1827. – P. 1362–1377.

Domain conformational switch of the iron–sulfur protein in cytochrome bc1 complex is induced by the electron transfer from cytochrome bL to bH / C.A. Yu, X. Cen, H.W. Ma [et al.] // Biochim. Biophys. Acta. – 2008. – V. 1777. – P. 1038–1043.

Cadenas E. Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria / E. Cadenas, A. Boveris // Biochem. J. – 1980. – V. 188. – P. 31–37.

The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity / V.K. Klochkov, A.V. Grigorova, O.O. Sedyh [et al.] // Coloids and Surfaces A: Physicochem. Engineering Aspects. – 2012. – V. 409 – P. 176 – 182.

Lambert A.J. Superoxide production by NADH:ubiquinone oxidoreductase(complex I) depends on the pH gradient across the mitochondrial innermembrane / A.J. Lambert, M.D. Brand // Biochem. J. – 2004. – V. 382. – P. 511–517

Harakteristiki zolej nReVO4:Eu3+ (Re = La, Gd, Y, Sm) s nanochasticami raznoj formy i razmerov. V.K. Klochkov, A.V. Grigorova, O.O. Sedyh, [i dr.] // ZhPS. – 2012. – 79(5). – S. 738-742.

Kamatch S.A. Interaction of Ca2+ with endoplasmatic reticulum of rat liver: a standart procedure for the isolation of microsomes / S.A. Kamatch, K.A. Narayan // Anal. Biochem. – 1972. – V. 48, № 1. – P. 53 – 61.

Vozrastnye perestrojki strukturno-funkcional'nogo sostojanija membrannyh redoks-sistem: avtoref. dis. na soiskanie nauchn. stepeni dokt. biol. nauk: spec. 03.00.02 «Biofizika» / V. V. Lemeshko. – Minsk, 1983. – 36 s.

Hemiljuminescentnaja diagnostika svobodnoradikal'nyh processov v abioticheskoj sisteme i v kletkah pecheni v prisutstvii nanochastic na osnove redkozemel'nyh jelementov nReVO4:Eu3+ (Re = Gd, Y, La) i CeO2 / E.A. Averchenko, N.S.Kavok, V.K. Klochkov [et al.] // Zhurnal prikladnoj spektroskopii. – 2014. V. 81 (5). – S. 754-760.

Mitochondrial potential (ΔΨm) changes in single rat hepatocytes: The effect of orthovanadate nanoparticles doped with rare-earth elements / N.S. Kavok, K.A. Averchenko, V.K. Klochkov, [et al.] // European Physical Journal: E Soft Matter and Biological Physics. – 2014. – V. 37 (12). – P. 127.

The energy-state of the hepatocytes of satiated rats, isolated with the use of EDTA and vibrationy / A.Yu. Petrenko, V.P. Grishuk, A.N. Sukach [et al.] // Biochemistry (Moscow). – 1989. – V. 54, № 12. – P. 1952-1955.

W. Lamprecht, I. Trautschold / Methods of enzymatic analysis // W. Lamprecht, I. Trautschold - New York: Acad. Press., 1965. – P. 543-551.

Metody biohimicheskih issledovanij / [pod red. M.I. Prohorovoj]. – L.: LGU, 1982. – 272 s

Effect of inorganic nanoparticles and organic complexes on their basis on free-radical processes in some model systems / K.A. Averchenko, N.S. Kavok, V.K. Klochkov [et al.] // Biopolimers and Cell. – 2015. – V. 31, № 2. – P. 138–145.

Pro-oxidant and antiradical properties of rare-earth based nanoparticles evaluated by chemiluminometry / K.A. Averchenko N.S. Kavok, V.K. Klochkov [et al.] // Book of Abstracts of XXI Galyna Puchkovska International School-Seminar “Spectroscopy of Molecules and Crystals”. – Beregove (Crimea), 2013. – P. 173-174.

Skulachev V. P. Mitochondria, reactive oxygen species and longevity: some lessons from the Barja group / V. P. Skulachev // Aging Cell. – 2004. – V. 3, № 1. – P. 17 – 19.

Koltover V.K. Svobodnoradikalnaja teorija starenija: istorichskij ocherk / V.K. Koltover // Yspexi gerontol. – 2000. – V. 4. – P. 33-40.

Byczkowski J.Z. Interaction of vanadate with respiratory chain of rat liver and wheat seedling mitochonria / J.Z. Byczkowski, L. Zychlinski, J. Tluczkiewicz // Int. J.Biochem. – 1979. – V. 10. – P. 1007-1011.

A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells / Y. Wang, W.G. Aker, H.M. Hwang [et al.] // Sci Total Environ. – 2011. – V. 409, № 22. – Р. 4753-4762.

Abramova G.I. Chelovek i protivookislitelnie vewestwa // Abramova J.I., G.I. Okcengendler; red. N.V. Savateev – Leningrad: Nayka, 1985. – 230 s.

Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study / M.A. Aon, B.A. Stanley, V. Sivakumaran [et al.] // J. Gen. Physiol. – 2012. – V. 139. – P. 479–491.

Cited
How to Cite
Averchenko, K. A., Kavok, N. S., & Yefimova, S. L. (1). Concerning the mechanisms of influence of redox-active nanoparticles based on rare-earth elements on the redox-processes in mitochondria. Biophysical Bulletin, 1(35), 10-20. https://doi.org/10.26565/2075-3810-2016-35-02
Section
Cell biophysics