Peculiarities of the prime structures of the red fluorescent proteins that change their fluorescent spectra with time

  • F. V. Subach Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine
  • K. S. Morozova Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine
  • O. M. Subach Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine
  • V. V. Verkhusha Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine
  • N. I. Bulankina Department of Biochemsitry, V.N. Karazin Kharkiv National University
  • M. V. Goenaga Department of Biochemsitry, V.N. Karazin Kharkiv National University
Keywords: fluorescent protein, mutagenesis, chromophore, fluorescence

Abstract

By the directed sight-specific and accidental mutagenesis of the red fluorescent protein mCherry, 3 mutant
proteins have been developed, named fluorescent timers (FT), which, in contrast to initial protein, change their fluorescence from blue to red. Their prime structures have been determined. Isolated mutant proteins differ one from another by the rate of the fluorescence spectra changes with the different rate: fast (FFT), Medium (MFT), and Slow (SFT). In comparison with initial mCherry FFT contains 5 amino acid replacements.
Lys→Arg, Leu→Trp, Ala→Ser at 69, 84 & 224 positions are internal, and Glu→Lys, Ser→Thr at 34 and 15
positions are situated at the external surface of the protein. In the amino acid sequence of MFT, there have been found 9 substitutions. Replacements Lys→Arg, Leu→Trp, Met→Ile, Leu→Met at 69, 84, 152 & 205 positions are internal, Asn→Asp, Thr→Ser, Gln→Lys, Tyr→Cys, Arg→His at 23, 43, 194, 221 & 227- external. SFT has only 4 replacements. Three of them Lys→Arg, Leu→Trp, Ala→Val at 69, 84 & 179 positions are in the
inner space of the molecule, Glu→Val at 30 positions is at its surface. The structural roles of substitutions that have been found are discussed in relation to the fluorescent properties of FFT, MFT, and SFT and their difference from the properties of mCherry and one from another.

Downloads

Download data is not yet available.

Author Biographies

F. V. Subach, Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine

1300 Morris Park Avenue, Bronx, NY 10461, USA

vverkhus@aecom.yu.edu

K. S. Morozova, Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine

1300 Morris Park Avenue, Bronx, NY 10461, USA

epersky@list.ru

O. M. Subach, Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine

1300 Morris Park Avenue, Bronx, NY 10461, USA

vverkhus@aecom.yu.edu

V. V. Verkhusha, Department of Anatomy and Structural Biolog,Albert Einstein College of Medicine

1300 Morris Park Avenue, Bronx, NY 10461, USA

vverkhus@aecom.yu.edu

N. I. Bulankina, Department of Biochemsitry, V.N. Karazin Kharkiv National University

4 Svobody square, Kharkiv 61077, Ukraine

epersky@list.ru

M. V. Goenaga, Department of Biochemsitry, V.N. Karazin Kharkiv National University

4 Svobody square, Kharkiv 61077, Ukraine

vverkhus@aecom.yu.edu, epersky@list.ru

References

1. Shaner N.C., Patterson G.H., Davidson M.W. Advances in fluorescent protein technology // J. Cell Sci.– 2007. –V. 120. – P. 4247-4260.

2. Miyawaki A., Karasawa S. Memorizing spatiotemporal patterns // Nat. Chem. Biol. – 2007. – V. 3. – P. 598-601.

3. Terskikh A. "Fluorescent timer": protein that changes color with time // Science. – 2000. – V. 290. – P. 1585-1588.

4. Mirabella R., Franken C., van der Krogt G.N., Bisseling T., Geurts R. Use of the fluorescent timer DsRed-E5 as reporter to monitor dynamics of gene activity in plants // Plant Physiol. –2004. – V. 135. –P. 1879-1887.

5. Verkhusha V.V., Chudakov D.M., Gurskaya N.G., Lukyanov S., Lukyanov K.A. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins // Chem. Biol. – 2004.– V. 11. – P. 845-854.

6. Subach F.V., Subach O.M., Gundorov I.S., Morozova K.S., Piatkevich K.D., Cuervo A.M., Verkhusha V.V. Monomeric fluorescent timers that change the color from blue to red // Nat. Chem. Biol. – 2009. – V. 5:2. – P. 118-126.

7. Субач Ф.В., Морозова Е.С., Верхуша В.В., Перский Е.Э. Спектральные характеристики красных флуоресцентных белков, изменяющих спектр флуоресценции во времени // Біофізичний Вісник – 2009. – №. 22 (1) – C. 116-122.

8. Ho S.N., Hunt H.D., Horton R.M., Pullen J.K., Pease L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction // Gene –1989. – V. 77. –P. 51-59.

9. Shu X., Shaner N.C., Yarbrough C.A., Tsien R.Y., Remington S.J. Novel chromophores and buried charges control color in mFruits // Biochemistry –2006. – V. 45. – P. 9639- 9647.

10. Bevis B.J., Glick B.S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) // Nat. Biotechnol. –2002. – V. 20. –P. 83-87.

11. Remington S.J. Fluorescent proteins: maturation, photochemistry and photophysics // Curr Opin Struct Biol. – 2006. – V. 16. –P. 714-721.

12. Reid B.G., Flynn G.C. Chromophore formation in green fluorescent protein // Biochemistry – 1997. – V. 36. – P. 6786-6791.

13. Yarbrough D., Wachter R.M., Kallio K., Matz M.V., Remington S.J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution // Proc Natl Acad Sci U S A – 2001. – V. 98. – P. 462-467.
Published
2009-06-05
Cited
How to Cite
Subach, F. V., Morozova, K. S., Subach, O. M., Verkhusha, V. V., Bulankina, N. I., & Goenaga, M. V. (2009). Peculiarities of the prime structures of the red fluorescent proteins that change their fluorescent spectra with time. Biophysical Bulletin, 2(23), 52-58. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/4364