Influence of storage and γ-radiation on dielectric characteristics of suspensions of erythrocytes in the presence of ultradisperse nanodiamonds
Abstract
In this work was studied the influence of the storage during 16 hours at +4 C and γ-radiation on dielectric
properties of the suspensions of red blood cells in the presence of nanodiamonds (ND). It were
investigated the dielectric and electrical properties of the suspensions of red blood cells, containing ND
(TOV NPP SINTA, Kharkov) in a concentration of 0.04 mass. % and 1.32 mass. % by the methods of
microwave dielectrometry and low-frequency conductivity. There were used the plasma of blood and
physiological solution as suspending media. Samples were irradiated at the γ-aim «Issledovatel’» by the
radioactive isotope of 60Co during 16 hours with the power of radiation 75,5 R/min. Absorbed dose was
725 Gr. Studied parameters γ-irradiated samples were compared with the parameters of freshly prepared
samples and stored within 16 hours. Studied parameters of γ-irradiated samples compared to parameters
of native samples and stored during 16 hours. At storage of suspensions of erythrocytes within 16 hours
changes in values of static dielectric permeability εs and frequency of a dielectric relaxation of water
molecules fd were not found only for a sample with physiological solution as the suspending media and
ND in concentration of 1,32 mass. %. At impact on suspensions γ-radiation changes in values εs and fd in
comparison with stored samples were not found for a sample with physiological solution and ND in
concentration 0,04 mass. %. Physiological solution is the better than plasma suspension media for the
erythrocytes which suspensions contain ND. Depending on concentration ND promote preservation of
dielectric and electric properties of suspensions of erythrocytes as at storage of samples during certain
time so at action on them γ-radiation
Downloads
References
2. Чиганова Г.А. Структура и свойства ультрадисперсных алмазов детонационного синтеза / Г.А. Чиганова, С.А. Чиганов // Неорганические материалы – 1999. – Т. 35, № 5. – С. 581-586. /Chiganova G.A. Struktura i svojstva ul'tradispersnyh almazov detonacionnogo sinteza / G.A. Chiganova, S.A. Chiganov // Neorganicheskie materialy – 1999. – T. 35, № 5. – S. 581-586./
3. Бондарь В.С. Применение наноалмазов для разделения и очистки белков / В.С. Бондарь, И.О. Позднякова, А.П. Пузырь // Физика твёрдого тела – 2004. – Т. 46, №4. – С. 737. /Bondar' V.S. Primenenie nanoalmazov dlja razdelenija i ochistki belkov / V.S. Bondar', I.O. Pozdnjakova, A.P. Puzyr' // Fizika tvjordogo tela – 2004. – T. 46, №4. – S. 737./
4. Are diamond nanoparticles cytotoxic? / A.M. Schrand, H. Huang, C. Carlson, [et al.] // J. Phys. Chem. B. – 2007. – Vol. 111, № 1. – P. 2–7.
5. Дослідження радіопротекторних властивостей наноалмазів в експерименті / Є.М. Мамотюк, В.А. Гусакова, Н.Є. Узленкова, [та ін.] // Український радіологічний журнал. – 2009. – № 17. – С. 65-71. /Doslidzhennja radioprotektornyh vlastyvostej nanoalmaziv v eksperymenti / Je.M. Mamotjuk, V.A. Gusakova, N.Je. Uzlenkova, [ta in.] // Ukrai'ns'kyj radiologichnyj zhurnal. – 2009. – № 17. – S. 65-71./
6. До питання про механізм радіопротекторної дії наноалмазів / Є.М. Мамотюк, С.В. Руденко, В.А. Гусакова, [и др.] // Український радіологічний журнал. – 2009. – № 17., №4. – С. 486-490. /Do pytannja pro mehanizm radioprotektornoi' dii' nanoalmaziv / Je.M. Mamotjuk, S.V. Rudenko, V.A. Gusakova, [y dr.] // Ukrai'ns'kyj radiologichnyj zhurnal. – 2009. – № 17., №4. – S. 486-490./
7. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo / G.V. Andrievsky, V.I. Bruskov, A.A. Tykhomyrov, S.V. Gudkov // Free Radic. Biol. Med. – 2009. – Vol. 47, Iss. 6. – P. 786–793.
8. Діелектричне дослідження стану води в суспензіях ультрадисперсних наноалмазів (До механізму радіопротекторної дії водних суспензій наноалмазів) / О.А. Горобченко, О.Т. Николов, Є.М. Мамотюк, [та ін.] // Український радіологічний журнал. – 2010. - №18. – С. 439-445. /Dielektrychne doslidzhennja stanu vody v suspenzijah ul'tradyspersnyh nanoalmaziv (Do mehanizmu radioprotektornoi' dii' vodnyh suspenzij nanoalmaziv) /O.A. Gorobchenko, O.T. Nykolov, Je.M. Mamotjuk, [ta in.] // Ukrai'ns'kyj radiologichnyj zhurnal. – 2010. - №18. – S. 439-445./
9. Пат. 663522 США. Method of sterilizing products: Пат. 663522 / Kent; Randall S. (США), Clearant, Inc. – № 985606, Опублік. 21.10.03. /Pat. 663522 SShA. Method of sterilizing products: Pat. 663522 / Kent; Randall S. (SShA), Clearant, Inc. – № 985606, Opublik. 21.10.03./
10. Николов О.Т. Измерение комплексной диэлектрической проницаемости жидких диэлектриков с большими потерями / О.Т. Николов, Т.А. Жилякова // Журнал физической химии. – 1991. – Т.65, №5. – C. 1417-1420. /Nikolov O.T. Izmerenie kompleksnoj dijelektricheskoj pronicaemosti zhidkih dijelektrikov s bol'shimi poterjami / O.T. Nikolov, T.A. Zhiljakova // Zhurnal fizicheskoj himii. – 1991. – T.65, №5. – C. 1417-1420./
11. Потапов А.А. Ориентационная поляризация: поиск оптимальных моделей / А.А. Потапов. – Новосибирск: Наука, 2000. – 336 с. /Potapov A.A. Orientacionnaja poljarizacija: poisk optimal'nyh modelej / A.A. Potapov. – Novosibirsk: Nauka, 2000. – 336 s./
12. Jenin Pierre C. Some observations on the dielectric properties of hemoglobin’s suspending medium inside human erythrocytes / C. Jenin Pierre, H.P. Schwan // Biophys. J. – 1980. – V. 3. – P. 285-294.
13. Sato T. Dielectric relaxation processes in ethanol/water mixtures / T. Sato // J. Phys. Chem. A – 2004. – V.108. – P. 5007-5015.
14. Sato T. Dielectric relaxation spectroscopy of 2-propanol–water mixtures / T. Sato, R. Buchner // J. Chem. Phys. – 2003. – V.118. – P. 4606-4613.
15. Buchner R. Dielectric relaxation in solutions / R. Buchner, J. Barthel // J. Annu. Rep. Prog. Chem., Sect. C. – 2001. – V.97. – P. 349-382.
16. Kaatze U. Hydrogen network fluctuations and dielectric spectrometry of liquids / U. Kaatze, R. Behrends, R. Pottel // J. Non-Cryst. Solids. – 2002. – V.305. – P. 19-28.
17. Haggis G.H. The dielectric properties of water in solutions / G.H. Haggis, J.B. Hasted, T.J. Buchanan / J.Chem. Phys. – 1952. – V.20. – P. 1452-1465.
18. Дебай П. Полярные молекулы / П. Дебай; [пер. с нем. Н.К. Шодро]. – Л.-М.:ГНТИ, 1931. – 479 с. /Debaj P. Poljarnye molekuly / P. Debaj; [per. s nem. N.K. Shodro]. – L.-M.:GNTI, 1931. – 479 s./
19. Kaatze U. Complex permittivity of water as a function of frequency and temperature / U. Kaatze // J. Chem. Eng. Data. – 1989. – V.34. – P. 371-374.
20. Study of damage to red blood cells exposed to different doses of gamma-ray irradiation / Deyi Xu, Mingxi Peng, Zhe Zhang, [et. al.] // Blood Transfus. – 2012. – V. 10. – P. 321-330.
21. Герасимова Г.К. К анализу ранних нарушений транспорта в облучённых эритроцитах / Г.К. Герасимова, З.Н. Нахильницкая // – ДАН СССР. – 1969. – Т. 184. – С. 709-713. /Gerasimova G.K. K analizu rannih narushenij transporta v obluchjonnyh jeritrocitah / G.K. Gerasimova, Z.N. Nahil'nickaja // – DAN SSSR. – 1969. – T. 184. – S. 709-713./
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).