SURFACE DIFFUSION OF BOUND WATER IN HYDRATE SURROUNDINGS OF DNA

  • K. M. Virnik Biophysics Division, Institute of Radiophysics and Electronics, Ak. Proskura St. 12, Kharkov 310085, Ukraine
  • M. Ye. Tolstorukov Chair of Molecular and Applied Biophysics, Kharkov State University, Svobody Sq. 4, Kharkov 310077, Ukraine
  • V. Ya. Maleev Biophysics Division, Institute of Radiophysics and Electronics, Ak. Proskura St. 12, Kharkov 310085, Ukraine
Keywords: DNA molecule, water sorption, bound water, surface diffusion, fractal dimension

Abstract

Diffusion of water bound to a DNA molecule along its surface has been studied. A lattice model has been proposed to describe this process. The DNA sorbing surface has been considered as a fractal one. The values of the water diffusion coefficient, which depend on relative humidity of environment, have been estimated in the framework of the model within each interval of the ambient relative humidity where the DNA restores its conformation. They increase monotonously within each interval involved to about 5×10-11, 1.7×10-10 and 3.5×10-10 m2/s for partly disordered form of DNA, A- and B-DNA, respectively. Also, we estimated values of longitudinal diffusion coefficient, i.e. the diffusion directed along the helix axis, which for conformational states considered run into about 9×10-11, 3.8×10-11 and 7×10-11 m2/s. At the highest relative humidities the diffusion coefficient values tend to the values of the water self-diffusion coefficient for DNA solutions. We consider this fact as a result of increasing the number of the water molecules indirectly bound to the DNA binding sites.

Downloads

Download data is not yet available.

References

1 Lindsay S.M., Lee S.A., Powell J.M., Weidlich T., DeMarko C., Lewen G.D., Tao N. J., Rupprecht A. // Biopolymers. 1988. V.27. P. 1015-1043.


2. Maleev V. Ya., Semenov M. A., Gasan A. I. and Kashpur V. A. // Biophysics. 1993. V. 38. P.789-811.


3. Saenger W. // Ann.Rev.Biophys.Biophys.Chem. 1987. V. 16. P.93-114.


4. Lavalle N., Lee S.A., Rupprecht A. // Biopolymers. 1990. V.30. P.877-887.


5. Weidlich T., Lindsay S.M., Rupprecht A. //Phys. Rev. Lett. 1988. V.61. P. 1674-1677.


6. Wang J.H. // J. Am. Chem. Soc. 1955. V.77. P.258-260.

7. Andreasson B., Nordenskiöld L., Eriksson D.-O., Rupprecht A. //Biopolymers. 1994. V.34. P.1605-1614.

8. Stejskal E.O., Tanner J.E. // J. Chem. Phys. 1965. V.42. P.288-292.


9. Lahajnar G., Zupancic I., Rupprecht A. // Biophysics of Water. New York: Wiley. 1982. P.231-234.


10. Frenkel Ya. I. Kinetic theory of liquids. L. Nauka, 1975. 592p.


11. Feder E. Fractals. M. Mir, 1991. 262p.


12. Bul'enkov N. A. //Biofizika. 1991. V.36. P.181-243.


13. Virnik K.M., Tolstorukov M.Ye. // Vest, problem v biol. i meditsine. 1998. No.2. P.5-16.


14. Nauchitel V. V. and Bayramov Sh. K. // Molekulyarnaya biologiya. 1991. V.25. P. 162-171.


15. Zehfus U.H., Johnson W.C. // Biopolymers. 1984. V.23. Р. 1269-1281.


16. Gordeev G.P., Haydarov T. // Water in Biological Systems and Their Components. L. Lenigrad. Univ., 1983. P.3-9.


17. Falk M., Hartman K.A., Lord R.C. // J. Am. Chem. Soc. 1963. V.85. P.387-391.


18. Saenger W., Hunter W.N., Kennard O. //Nature. 1986. V.324. P.385-388.

19. Drew H.R., Dickerson R.E. // J. Mol. Biol. 1981. V. 151. P.535-556.

20. Kim U.-S., Fujimoto B.S., Furlong C.E., Sundstrom J.A., Humbert R., Teller D.C., Schurr J.M. // Biopolymers. 1993. V.33. P. 1725-1745.
Cited
How to Cite
Virnik, K. M., Tolstorukov, M. Y., & Maleev, V. Y. (1). SURFACE DIFFUSION OF BOUND WATER IN HYDRATE SURROUNDINGS OF DNA. Biophysical Bulletin, 2(2). Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/2445