Method to evaluate partial volume of a globular protein based on its atomic coordinates

  • I. E. Shchechkin Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine
  • T. O. Hushcha Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine
Keywords: partial volume, protein solution, molecular surface, theory of hydrophobic interactions, conic scaffold, interatomic space, fitting parameters

Abstract

A new technique is proposed to evaluate partial molecular volume of a globular protein where the bulk of
the molecule is treated as consisting of cones with common vertex, whose bases correspond to surface
atoms and constitute the surface of the molecule. Volume of molecule is assumed to be sum of the
volumes of the cones. Volume of each cone is evaluated through the square of its base which, in turn, is
calculated from amount of clear space around corresponding atom. Evaluating of volumes of some
protein molecules using the method shows good agreement with experimental data

Downloads

Download data is not yet available.

Author Biographies

I. E. Shchechkin, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine

Murmanska 1, Kiev-94, 02660

T. O. Hushcha, Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine

Murmanska 1, Kiev-94, 02660

References

Imai T. Molecular theory of partial molar volume and its applications to biomolecular systems. J. Condensed Matter Physics. 2007 Sep; 10(3): 343-361.

Chalikian TV, Totrov M, Abagyan R, Breslauer KJ. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J. Mol. Biol. 1996 Jul 26; 260(4): 588-603.

Gekko K, Hasegawa Ya. Compressibility – structure relationship of globular proteins. J. Biochem. 1986 Oct 21; 25(21): 6563-6571.

Poklar N, Völker J, Anderluh G, Macek P, Chalikia TV. Acid- and base-induced conformational transitions of equinatoxin II. Biophys. Chem. 2001 Apr 10; 90(2): 103-121.

Filfil R, Ratavosi A, Chalikian TV. Binding of bovine pancreatic trypsin inhibitor to trypsinogen: spectroscopic and volumetric studies. Biochemistry. 2004 Feb 10; 43(5): 1315-1322.

Filfil R, Chalikian TV. Volumetric and spectroscopic characterizations of glucose-hexokinase association. FEBS Lett. 2003 Nov 20; 554(3): 351-356.

Chalikian TV, Filfil R. How large are the volume changes accompanying protein transitions and binding? Biophys Chem. 2003 Jun 01; 104(2): 489-499

Chalikian TV, Vаlker J, Anafi D, Breslauer KJ. The native and the heat-induced denatured states of alpha-chymotrypsinogen A: thermodynamic and spectroscopic studies. J. Mol. Biol. 1997 Nov 28; 274(2): 237-252.

Dadarlat VM. Post KB. Insights into protein compressibility from molecular dynamics simulations. J. Chem. Phys. B. 2001 Jan 01; 105(3): 715-724.

Lee B. Calculation of volume fluctuation for globular protein models. Proc. Natl. Acad. Sci. USA. 1983 Jan 01; 80(2): 622-626.

Richards FM. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 1977 Feb; 6: 151-176.

Connolly ML. Analytical molecular surface calculation. J. Appl. Cryst. 1983 Oct; 16: 548-558.

Paci E, Marchi M. Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure. Proc. Natl. Acad. Sci. USA. 1996 Oct 15; 93(21): 11609-11614.

Kim AV, Medvedev NN, Gajger A. Issledovanie strukturnyh i termodinamicheskih osobennostej gidratnoj obolochki amfifil'noj molekuly S8E6. Struktura i dinamika molekuljarnyh sistem. 2011; 10 A: 36-42.

Totrov M, Abagyan R. The contour-buildup algorithm to calculate the analytical molecular surface. J. Struct. Biol. 1996 Jan-Feb; 116(1): 138–143.

Bajaj C, Pascucci V, Shamir A, Holt R, Netravali A. Dynamic maintenance and visualization of molecular surfaces. Discr Appl Math. 2003 Dec; 127(1): 23-51.

Zhao W, Bajaj Ch, Xu G. An algebraic spline model of molecular surfaces for energetic computations. IEEE/ACM Trans Comput Biol Bioinform. 2011 Nov-Dec; 8(6): 1458-1467.

Bates PW, Wei GW, Zhao S. Minimal molecular surfaces and their applications J. Comput. Chem. 2008 Feb; 29(3): 380-391.

Can T, Chen CI, Wang YF. Efficient molecular surface generation using level-set methods. J. Mol Graph Model. 2006 Dec; 25(4): 442-54. Epub 2006 Apr 18.

Cheng LT, Dzubiella J, McCammon JA, Li B. Application of the level-set method to the implicit solvation of nonpolar molecules. J. Chem. Phys. 2007 Aug 28; 127(8): 084503.

Pan Q, Tai XC. Model the solvent-excluded surface of 3D protein molecular structures using geometric PDE-based level-set method. Commun. Comput. Phys; 2009 Nov; 6(4): 777-792.

Weiser J, Shenkin PS, Still WC. Approximate solvent-accessible surface areas from tetrahedrally directed neighbоr densities. Biopolymers. 1999 Oct 5; 50(4): 373-380.

Weiser J, Shenkin PS, Still WC. Fast, approximate algorithm for detection of solvent-inaccessible atoms. J. Comput. Chem. 1999 Mar 23; 20: 586-596.

Cited
How to Cite
Shchechkin, I. E., & Hushcha, T. O. (1). Method to evaluate partial volume of a globular protein based on its atomic coordinates. Biophysical Bulletin, 1(29). Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/2323