Applicability of cyanine aggregates for detection of nucleic acids

  • G. Ya. Guralchuk Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine
  • R. S. Grinev Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine
  • I. K. Katrunov Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine
  • A. V. Sorokin Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine
  • S. L. Efimova Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine
  • Yu. V. Malyukin Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine
  • S. M. Yarmolyuk Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine
Keywords: nucleic acids, groove binding, J-aggregates, cyanine dyes, fluorescent probes

Abstract

The peculiarities of aggregation of cyanine dye 3,3'-dimethyl-9-(2-thienyl)-thiacarbocyanine iodide (Cyan-βTh) in binary solution DMFA:TRIS-HCl buffer (pH 8) in the presence of nucleic acids (DNA and RNA) have been examined by means of optical spectroscopy. It was found that dye aggregates interact with DNA by binding to acid groove, the process which is characterized by complicated structure of aggregates' absorbance and fluorescence. Block model of Cyan-βTh aggregation on nucleic acids where the main block is dye aggregates has been proposed. Fluorescent decay curves of dye monomers and aggregates corroborating the proposed model have been obtained. The absorbance and fluorescence bands of Cyan-βTh aggregates in the presence of DNA differ from those observed in the presence of RNA. This fact allowed attributing the examined dye to a specific one for nucleic acid detection.

Downloads

Download data is not yet available.

Author Biographies

G. Ya. Guralchuk, Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine

60 Lenin Ave., Kharkov , 61001,Ukraine

R. S. Grinev, Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine

60 Lenin Ave., Kharkov 61001,Ukraine

I. K. Katrunov, Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine

60 Lenin Ave., Kharkov 61001,Ukraine

A. V. Sorokin, Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine

60 Lenin Ave., Kharkov 61001,Ukraine

S. L. Efimova, Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine

60 Lenin Ave., Kharkov 61001,Ukraine

Yu. V. Malyukin, Institute for Scintillation Materials, STC "Institute for Single Crystals" of the National Academy of Sciences of Ukraine

60 Lenin Ave., Kharkov 61001,Ukraine

S. M. Yarmolyuk, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine

150 Zabolotnogo St., 03143,  Kyiv, Ukraine

References

Waring MJ, Chaires JB, editors. DNA binders and related subjects. Berlin:Springer; 2005.

Haughland R. Molecular Probes. Handbook of Fluorescent Probes and Research Chemicals 9h ed, Molecular Probes, Inc., Eugene, OR, 2002

Ohulchanskyy TY, Pudavar HE, Yarmoluk SM, Yashchuk VM, Bergey EJ, Prasad PN. Photochem. Photobiol 2003;77(2):138-45.

Yarmoluk SM, Losytskyy MYu, Yashchuk VM. J. Photochem. Photobiol. B. 2002;67(1):57-63.

Valyukh V, Kovalska VB, Slominskii YL, Yarmoluk SM, J. Fluoresc. 2002;12(1):105-7.

Losytskyy MYu, Volkova KD, Kovalska VB, Makovenko IE, Slominski YuL, Tolmachev OI, Yarmoluk SM. J. Fluoresc. 2005;15(6):849-57.

Kovalska VB, Volkova KD, Losytskyy MYu, Tolmachev OI, Balanda AO, Yarmoluk SM. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2006;65(2):271-7.

Kovalska VB, Tokar VP, Losytskyy MYu, Deligeorgiev T, Vassilev A, Gadjev N, et al. J. Biochem. Biophys. Method. 2006;68(3):155-65.

Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, et al. Nature. 2001;409:374-8.

Lerman LS, J. Mol. Biol. 1961;3:18-30.

Rye HS, Yue S, Wemmer DE, Quesada MA, Haughland RP, Mathies RA, et al. Nucleic Acids Res. 1992;20(11):2803-12.

Larsson A, Carisson C, Jonsson M, Albinsson B. J. Am. Chem. Soc. 1994;116:8459-65.

Wemmer DE, Dervan HD. Curr. Opin. Struct. Biol. 1997;7:355-61.

Norden B. Biophys. Chem. 1977;6:31-45.

Seifert JL, Connor RE, Kushon SA, Wang M, Armitage BA. J. Am. Chem. Soc. 1999;121: 2987-95.

Wang M, Silva GL, Armitage B. J. Am. Chem Soc. 2000;122(41):9977-85.

Wemmer DE. Annu. Rev. Biophys. Biomol. Struct. 2000;29:439-61.

McRae EG, Kasha M, Mason R, Rosenberg B, editors. Physical processes in radiation biology. New York: Academic Press; 1964. p. 337-63.

Czikkely V, Forsterling HD, Kuhn H. Chem. Phys. Lett. 1970;6(3):207-10.

Ogul’chansky TYu, Losytkyy MYu, Kovalska VB, Lukashov SS, Yashchuk VM, Yarmolulk SM. Spectrochim Acta A: Mol. Biomol. Spectrosc. 2001;57(13):2705-15.

Losytskyy MYu, Yashchuk VM, Lukashov SS, Yarmoluk SM. J. Fluoresc. 2002;12(1):109-12.

Chowdhury A, Wachsmann-Hogiu S, Bangal PR, Raheem I, Petean LA. J. Phys. Chem. B. 22001;105(48):12196-201.

Mobius D. Adv. Matter. 1995;7(5):437-44.

Kobayashi T, editor. J-Aggregates, World Scientific Publishing Co. Pte. Ltd, Singapore, New Jersey, London, Hong Kong. 1996.

Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A. FEBS Lett. 1997;411:77-82.

Maeda Y, Nunomura K, Ohtsubo E. J. Mol. Biol. 1990;215:321-9.

Biver T, Secco F, Tine MR, Venturini M. Arch. Biochem. Biophys. 2003;418:63-70.

Bakalis LD, Knoester J. J. Lumin. 2000;87-89:66-70.

Lampoura SS, Spitz C, Dähne S, Knoester J, Duppen K. J. Phys. Chem. B. 2002;106:3103-17.

Davydov AS. Teoriia molekuliarnykh eksitonov. Moskva:Nauka; 1968. (in Russian)

Shapiro BI. Uspekhi khimii. 2006;75(5):484-509. (in Russian)

Ushiroda S, Ruzycki N, Lu Y, Spitler MT, Parkinson BA. J. Am. Chem. Soc. 2005;127:5158-68.

Basko DM, Lobanov AN, Pimenov AV, Vitukhnovsky AG. Chemical Physics Letters. 2003;369:192-7.

Birkan B, Gullen D, Ozcelik S. J. Phys. Chem. B. 2006;110:10805-13.


Ishchenko AA. Stroenie i spektralno-liuminestcentnye svoistva polimetinovykh krasitelei. Kiev:Naukova dumka; 1994. (in Russian)

Lakovich Dzh. Osnovy fluorestcentnoi spektroskopii. Moskva:Mir; 1986. (in Russian)
Published
2007-06-05
Cited
How to Cite
Guralchuk, G. Y., Grinev, R. S., Katrunov, I. K., Sorokin, A. V., Efimova, S. L., Malyukin, Y. V., & Yarmolyuk, S. M. (2007). Applicability of cyanine aggregates for detection of nucleic acids. Biophysical Bulletin, 1(18), 102-107. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/12630
Section
Methods of biophysical investigations