The simulation of the binding processes of actinocin antibiotics to DNA at different ionic strength and temperatures

  • E. B. Kruglova Institute for Radiophysics and Electronics of NAS of Ukraine
  • N. A. Gladkovskaya Institute for Radiophysics and Electronics of NAS of Ukraine
  • V. Ya. Maleev Institute for Radiophysics and Electronics of NAS of Ukraine
Keywords: spectrophotometry, DNA, actinocin antibiotic, effects of ionic strength, melting curves, entropy and enthalpy of complexation

Abstract

Spectral properties of actinocin antibiotic in complexes with DNA have been studied by UV-visible spectrophotometry. Two binding models with one and two binding sites for McGhee and von Hippel equations with different values of parameters have been considered. To choose the optimal model of complexation the optimization program of spectrophotometric concentration dependencies DALSMOD have been used. Using this program we can conclude, that as minimum three complexes with different absorption spectra in the system ActII - DNA are present. The logarithms of K2 and K3 for DNA-ActII mixtures, calculated for models I and II, in different sodium ion concentration were in good agreement with predictions of the counterion condensation theory. Via analysis of the absorption spectra of ActII-DNA mixtures at different temperatures, we obtained the values of AH and AS for each type of complexes. The magnitudes of entropy AS were positive in the 2·10-2 M NaCl solution and negative in the 0.15 M NaCl solution.

Downloads

Download data is not yet available.

Author Biographies

E. B. Kruglova, Institute for Radiophysics and Electronics of NAS of Ukraine

ул. Ак. Проскуры, 12, г. харьков, 61085 

N. A. Gladkovskaya, Institute for Radiophysics and Electronics of NAS of Ukraine

ул.  Академика Проскуры, 12, г. Харьков, 61085

V. Ya. Maleev, Institute for Radiophysics and Electronics of NAS of Ukraine

ул. Ак. Проскуры, 12, г. Харьков, 61085

References

Chaires JB. Curr.Opin.Struct.Biol.. Drug-DNA interactions. 1998;8:314-20.

Graves DE, Velea LM. Intercalative binding of small molecules to nucleic acids. 2002;27.

Experts from the annual research report for 1997 auckland cancer society research centre. Drug development programme.

Karapetian AT. J.Biomol.Struct.Dyn. 1990;8(1):123-30.

Peyrratout C, Donath E, Daehne L. J. Photochem. Photobiol. 2001;142:51-7.

Nyrgen J, Svanvik N, Kubista M. Biopolymers. 1998;46:39-51.

Tuite E, Norden B. J. Am. Chem. Soc. 1994;116:7548-56.

Antonov L, Gergov G, Petrov V, Kubista M, Nnygren J. Talanta. 1999;49:99-106.

Manning CS. Biopolymers. 1979;18:2357-8.

Glibin EN, Ovchinnikov DV, Plekhanova NG. ZhOr.Kh. 33(10):1573-6. (in Russian)

Veselkov AN, Davies DB. Anticancer Drug Desing. SEVNTU PRESS; 2002.

Kruglova EB. Biofizicheskii vestnik. 2002;1(10):12-20. (in Russian)

Kruglova EB. Biofizicheskii vestnik. 2001;1(8):27-41. (in Russian)

Nechipurenko IuD. Molekuliarnaia biologiia. 1984;18:1066-80. (in Russian)

McGhee JD, von Hippel PH. J.Mol.Biol. 1974;86:469-89.

Hartley F, Burgess C, Alcock R. Solution equlibra. Ellis Horwood, 1980. 360p.

Shchelkina AK. Molekuliarnaia biologiia. 1977;11(2):466-71. (in Russian)

Semenov MA. Biofizicheskii vestnik. 2001;2(9):40-4. (in Russian)

Marky LA, Blumenfeld KS, Breslauer KJ. Nucleic Acids Research. 1983;11(9):2857-70.

Sauer BB, Flint RA, Justice JB, Trowbridge CG. Arch. Biochem. Biophys. 1984;234(2):580-4.

Kubota Y, Eguchi Y, Hashimoto K, Wakita M, Honda Y, Fujisaki Y. Bull. Chem. Soc. Japan. 1976;49(9):2424-6.
Published
2018-06-25
Cited
How to Cite
Kruglova, E. B., Gladkovskaya, N. A., & Maleev, V. Y. (2018). The simulation of the binding processes of actinocin antibiotics to DNA at different ionic strength and temperatures. Biophysical Bulletin, 1(12), 53-63. Retrieved from https://periodicals.karazin.ua/biophysvisnyk/article/view/12327