Do carbon nanotubes inhibit or promote amyloid fibrils formation?

Keywords: аmyloid fibril, lysozyme, carbon nanotubes, β-sheet

Abstract

Objectives: The purpose of the work was to study the effect of carbon nanotubes on the formation of fibril structures in lysozyme at room temperature under different pH values.

Materials and methods: For the preparation of the samples, hen egg-white lysozyme protein (HEWL, Fluka), as well as single-walled (SWCNT, Sigma-Aldrich) and multi-walled (MWCNT, OOO TM “Spetsmash”, Kyiv, Ukraine) carbon nanotubes were used. Used techniques: IR-Fourier Absorption Spectroscopy; confocal microscopy.

Results: In this paper, the study of molecular mechanisms of interaction of lysozyme with carbon nanotubes by vibrational spectroscopy was carried out and a conformational analysis of the formed complexes was performed. It is shown that carbon nanotubes can affect the structure of lysozyme even at room temperature and normal pH values, as evidenced by conformational changes in lysozyme due to interaction with carbon nanotubes. Complexes which are formed as a result of such interaction, have characteristic features of amyloid fibrillar structures. It reveals one of possible mechanisms of carbon nanotubes cytotoxicity. On the other hand, such a technique can be introduced to obtain model amyloid fibrils for further study.

Conclusion: The method of vibtarional spectroscopy has shown that carbon nanotubes can influence the structure of lysozyme, as it is shown by the conformational analysis of the absorption band Amide I. After the interaction of lysozyme with CNT, an increase in the contribution of antiparallel β-conformation in the structure of lysozyme is observed, and the contribution of the α-helix conformation is reduced, which are characteristic features in the formation of fibrillar structures. The possibility of amyloid fibril formation without the use of high temperatures at different pH values with the interaction of lysozyme and carbon nanotubes, which can be applied as a method for obtaining the model amyloid fibrils, is shown.

Downloads

Download data is not yet available.

Author Biographies

M. V. Olenchuk, Institute of Physics of NASU

Nauky Avenue, 46, Kyiv, 03028, Ukraine

O. P. Gnatyuk, Institute of Physics of NASU

Nauky Avenue, 46, Kyiv, 03028, Ukraine

G. I. Dovbeshko, Institute of Physics of NASU

Nauky Avenue, 46, Kyiv, 03028, Ukraine

I. O. Polovyi, Institute of Physics of NASU

Nauky Avenue, 46, Kyiv, 03028, Ukraine

S. О. Karakhim, Palladin Institute of Biochemistry of NASU

Leontovycha St. 9, Kyiv, 01601, Ukraine

References

Annamalai, K., Gührs, K.-H., Koehler, R., Schmidt, M., Michel, H., Loos, C., Fändrich, M. (2016). Polymorphism of Amyloid Fibrils In Vivo. AngewandteChemie International Edition, 55(15), 4822-4825.

Li, H., Luo, Y., Derreumaux, P., & Wei, G. (2011). Carbon Nanotube Inhibits the Formation of β-Sheet-Rich Oligomers of the Alzheimer’s Amyloid-β(16-22) Peptide. Biophysical Journal, 101(9), 2267–2276. https://doi.org/10.1016/j.bpj.2011.09.046

Close, W., Neumann, M., Schmidt, A., Hora, M., Annamalai, K., Schmidt, M., …Fändrich, M. (2018). Physical basis of amyloid fibril polymorphism. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03164-5

Schmidt, A., Annamalai, K., Schmidt, M., Grigorieff, N., &Fändrich, M. (2016). Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Proceedings of the National Academy of Sciences, 113(22), 6200–6205. https://doi.org/10.1073/pnas.1522282113

Liberta, F., Loerch, S., Rennegarbe, M., Schierhorn, A., Westermark, P., Westermark, G. T., …Schmidt, M. (2018). Cryo-EM structure of an amyloid fibril from systemic amyloidosis. Cold Spring Harbor Laboratory. https://doi.org/10.1101/357129

Knubovets, T., Osterhout, J. J., Connolly, P. J., &Klibanov, A. M. (1999). Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proceedings of the National Academy of Sciences, 96(4), 1262–1267. https://doi.org/10.1073/pnas.96.4.1262

Zou, Y., Hao, W., Li, H., Gao, Y., Sun, Y., & Ma, G. (2014). New Insight into Amyloid Fibril Formation of Hen Egg White Lysozyme Using a Two-Step Temperature-Dependent FTIR Approach. The Journal of Physical Chemistry B, 118(33), 9834–9843. https://doi.org/10.1021/jp504201k

Riek, R., & Eisenberg, D. S. (2016). The activities of amyloids from a structural perspective. Nature, 539(7628), 227–235. https://doi.org/10.1038/nature20416

Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J. M., &Westermark, P. (2016). Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid, 23(4), 209–213. https://doi.org/10.1080/13506129.2016.1257986

Annamalai, K., Liberta, F., Vielberg, M.-T., Close, W., Lilie, H., Gührs, K.-H., …Fändrich, M. (2017). Common Fibril Structures Imply Systemically Conserved Protein Misfolding Pathways In Vivo. Angewandte Chemie International Edition, 56(26), 7510–7514. https://doi.org/10.1002/anie.201701761

Yuan, S., Deng, Q., Fang, G., Wu, J., Li, W., & Wang, S. (2014). Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme. Journal of Chromatography B, 960, 239–246. https://doi.org/10.1016/j.jchromb.2014.04.021

Gao, R., Zhang, L., Hao, Y., Cui, X., Liu, D., Zhang, M., & Tang, Y. (2015). Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white. Talanta, 144, 1125–1132. https://doi.org/10.1016/j.talanta.2015.07.090

Horn, D. W., Tracy, K., Easley, C. J., & Davis, V. A. (2012). Lysozyme Dispersed Single-Walled Carbon Nanotubes: Interaction and Activity. The Journal of Physical Chemistry C, 116(18), 10341–10348. https://doi.org/10.1021/jp300242a

Vaitheeswaran, S., & Garcia, A. E. (2011). Protein stability at a carbon nanotube interface. The Journal of Chemical Physics, 134(12), 125101.https://doi.org/10.1063/1.3558776

Dovbeshko, G. I., Chegel, V. I., Gridina, N. Y., Repnytska, O. P., Shirshov, Y. M., Tryndiak, V. P., … Solyanik, G. I. (2002). Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymers, 67(6), 470–486. https://doi.org/10.1002/bip.10165

Dovbeshko, G.I. (2009). Molecular mechanisms of interaction of biological molecules with nanostructures, ligands and low doses of ionizing and microwave irradiation. (Doctor of sciences dissertation, V.N. Karazin Kharkiv National University, Kharkiv). (in Ukrainian). Available from Vernadsky National Library of Ukraine (DS117134)

Dovbeshko, G.I., Chegel, V.I., Gridina, N.Ya.,Gnatyuk, O.P., Shirshov, Y.M., Tryndiak, V.P., and Todor, I.M. (2001). Surface enhanced infrared absorption of nucleic acids on gold substrate. Semiconductor Physics Quantum Electronics and Optoelectronics, 4(3), 202-206. https://doi.org/10.1117/12.429717

Dong A., Meyer J.D., Brown J.L., Manning M.C., Carpenter J. F. (2000) Comparative Fourier Transform Infrared and Circular Dichroism spectroscopic analysis of a1l-proteinase inhibitor and ovalbumin in aqueous solution. Arch. Biochem. Biophys. 383: 148-155. https://doi.org/10.1006/abbi.2000.2054

Goormaghtigh, E., Ruysschaert, J.-M., &Raussens, V. (2006). Evaluation of the Information Content in Infrared Spectra for Protein Secondary Structure Determination. Biophysical Journal, 90(8), 2946–2957. https://doi.org/10.1529/biophysj.105.072017

Pérez, C., &Griebenow, K. (2000). Fourier-transform infrared spectroscopic investigation of the thermal denaturation of hen egg-white lysozyme dissolved in aqueous buffer and glycerol. Biotechnology Letters. 22(23), 1899–1905. https://doi.org/10.1023/a:1005645810247

Zandomeneghi, G., Krebs, M. R. H., McCammon, M. G., &Fändrich, M. (2009). FTIR reveals structural differences between native β-sheet proteins and amyloid fibrils. Protein Science, 13(12), 3314–3321. https://doi.org/10.1110/ps.041024904

del Mercato, L. L., Pompa, P. P., Maruccio, G., Torre, A. D., Sabella, S., Tamburro, A. M., …Rinaldi, R. (2007). Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proceedings of the National Academy of Sciences, 104(46), 18019–18024. https://doi.org/10.1073/pnas.0702843104

Waters, J. C. (2009). Accuracy and precision in quantitative fluorescence microscopy. The Journal of Cell Biology, 185(7), 1135–1148. https://doi.org/10.1083/jcb.200903097

Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F., & Spudich, J. A. (2005). Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proceedings of the National Academy of Sciences, 102(5), 1419–1423. https://doi.org/10.1073/pnas.0409487102

Yildiz, A., &Selvin, P. R. (2005). Fluorescence Imaging with One Nanometer Accuracy: Application to Molecular Motors. Accounts of Chemical Research, 38(7), 574–582. https://doi.org/10.1021/ar040136s

Huang, B., W. Wang, M. Bates, and X. Zhuang. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810–813.

Manley, S., Gillette, J. M., Patterson, G. H., Shroff, H., Hess, H. F., Betzig, E., & Lippincott-Schwartz, J. (2008). High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nature Methods, 5(2), 155–157. https://doi.org/10.1038/nmeth.1176

Pawley J. B. (2006) Handbook of Biological Confocal Microscopy (3d ed.). Springer, New York: Science+Business Media, LLC.

Kovalska, V., Chernii, S., Cherepanov, V., Losytskyy, M., Chernii, V., Varzatskii, O., …Yarmoluk, S. (2017). The impact of binding of macrocyclic metal complexes on amyloid fibrillization of insulin and lysozyme. Journal of Molecular Recognition, 30(8), e2622. https://doi.org/10.1002/jmr.2622

Published
2019-06-06
Cited
How to Cite
Olenchuk, M. V., Gnatyuk, O. P., Dovbeshko, G. I., Polovyi, I. O., & KarakhimS. О. (2019). Do carbon nanotubes inhibit or promote amyloid fibrils formation?. Biophysical Bulletin, (42), 49-60. https://doi.org/10.26565/2075-3810-2019-42-04
Section
Molecular biophysics