Polarization-interference mapping of networks in diffusal polycristaline biological tissues
Abstract
Objectives: Development and experimental testing of the complex of Stokes-polarimetry and interferometry methods using algorithms for digital holographic reconstruction of the amplitude-phase structure of object fields for obtaining interrelationships between 3D distributions of depolarization maps and peculiarities of the polycrystalline structure of histological sections of biological tissues of different morphological structures and physiological state.
Materials and methods: The basis of the 3D Müller-matrix mapping method is the use of a reference wave of laser radiation, which is superimposed on a polarization-non-uniform image of the biological layer in the scheme of the optical interferometer.
Results: In the process of comparative analysis of the map of depolarization of biological tissues with different geometric scales of the morphological structure, we found different rates of growth of the degree of depolarization.
Downloads
References
De Martino, A. (2009). A polarization-based optical techniques applied to biology and medicine. In Proc. European Workshop, Ecole Polytechnique, Massy, France.
Ghosh, N., & Vitkin, A. I. (2011). Tissue polarimetry: concepts, challenges, applications, and outlook. Journal of biomedical optics, 16(11), 110801.
Jacques, S. L. (2016). Polarized light imaging of biological tissues. In Handbook of biomedical optics (pp. 669-692). CRC Press.
Ghosh, N., Wood, M., & Vitkin, A. (2010). Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Us-ing Mueller Matrix Decomposition. In Handbook of photonics for biomedical science (pp. 289-318). CRC Press.
Layden, D., Ghosh, N., & Vitkin, A. (2013). Quantitative polarimetry for tissue characterization and diagnosis, in Advanced Biophotonics: Tissue Optical Sectioning. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 73-108.
Vitkin, A., Ghosh, N., & De Martino, A. (2015). Tissue polarimetry Photonics: Scientific Foundations, Technology and Applications, vol. 4. D.L. Andrews (Eds.).
Mishchenko, M. I., Travis, L. D., & Lacis, A. A. (2002). Scattering, absorption, and emission of light by small particles. Cambridge university press.
Swami, M. K., Patel, H. S., & Gupta, P. K. (2013). Conversion of 3× 3 Mueller matrix to 4× 4 Mueller matrix for non-depolarizing samples. Optics Communications, 286, 18-22.
Izotova, V. F., Maksimova, I. L., Nefedov, I. S., & Romanov, S. V. (1997). Investigation of Mueller matrices of anisotropic nonhomogeneous layers in application to an optical model of the cornea. Applied optics, 36(1), 164-169.
Tuchin, V. V. (2015). Tissue optics and photonics: biological tissue structures. Journal of Biomedical Photonics & Engineering, 1(1).
Tuchin, V. V. (2015). Tissue optics and photonics: light-tissue interaction. Journal of Biomedical Photonics & Engineering, 1(2).
Manhas, S., Swami, M. K., Buddhiwant, P., Ghosh, N., Gupta, P. K., & Singh, K. (2006). Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry. Optics express, 14(1), 190-202.
Deng, Y., Zeng, S., Lu, Q., & Luo, Q. (2007). Characterization of backscattering Mueller matrix patterns of highly scattering media with triple scattering assumption. Optics Express, 15(15), 9672-9680.
Ushenko, A. G., & Pishak, V. P. (2004). Laser polarimetry of biological tissue: principles and applications. Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, 1, 93-138.
Angelsky, O. V., Ushenko, A. G., Ushenko, Y. A., Pishak, V. P., & Peresunko, A. P. (2010). Statistical, correlation, and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues. In Handbook of Photonics for Biomedical Science (pp. 319-358). CRC Press.
Ushenko, Y. A., Boychuk, T. M., Bachynsky, V. T., & Mincer, O. P. (2013). Diagnostics of structure and physiological state of birefringent biological tissues: statistical, correlation and topological approaches. Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental Monitoring, and Materials Science, 107.
Lu, S. Y., & Chipman, R. A. (1996). Interpretation of Mueller matrices based on polar decomposition. JOSA A, 13(5), 1106-1113.
Guo, Y., Zeng, N., He, H., Yun, T., Du, E., Liao, R., ... & Ma, H. (2013). A study on forward scattering Mueller matrix decomposition in anisotropic medium. Optics express, 21(15), 18361-18370.
DeBoo, B., Sasian, J., & Chipman, R. (2004). Degree of polarization surfaces and maps for analysis of depolarization. Optics express, 12(20), 4941-4958.
Buscemi, I. C., & Guyot, S. (2013). Near real-time polarimetric imaging system. Journal of Biomedical Optics, 18(11), 116002.
Manhas, S., Vizet, J., Deby, S., Vanel, J. C., Boito, P., Verdier, M., ... & Pagnoux, D. (2015). Demonstration of full 4× 4 Mueller polarimetry through an optical fiber for endoscopic applications. Optics express, 23(3), 3047-3054.
Pierangelo, A., Manhas, S., Benali, A., Fallet, C., Totobenazara, J. L., Antonelli, M. R., ... & Validire, P. (2013). Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. Journal of biomedical optics, 18(4), 046014.
Wang, L. V., & Wu, H. I. (2012). Biomedical optics: principles and imaging. John Wiley & Sons.
Boas, D. A., Pitris, C., & Ramanujam, N. (Eds.). (2016). Handbook of biomedical optics. CRC press.
Vo-Dinh, T. (2014). Biomedical Photonics Handbook, 3 Volume Set. CRC press.
Tuchin, V. V. (2015). Tissue optics: Light scattering methods and instruments for medical diagnosis: Third edition. SPIE Press, Bellingham, Washington.
Lu, S. Y., & Chipman, R. A. (1996). Interpretation of Mueller matrices based on polar decomposition. JOSA A, 13(5), 1106-1113.
Ghosh, N., Wood, M., & Vitkin, A. (2010). Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Using Mueller Matrix Decomposition. In Handbook of photonics for biomedical science (pp. 253-282).
Kasaragod, D. K., Lu, Z., Jacobs, J., & Matcher, S. J. (2012). Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography. Biomedical optics express, 3(3), 378-387.
Yasuno, Y., Ju, M. J., Hong, Y. J., Makita, S., Lim, Y., & Yamanari, M. (2015). Jones Matrix based polarization sensitive optical coherence tomography. Optical Coherence Tomography: Technology and Applications, 1137-1162.
Ossikovski, R., & Arteaga, O. (2014). Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media. Optics letters, 39(15), 4470-4473.
Криволапов, Ю. А., & Леенман, Е. Е. (2006). Морфологическая диагностика лимфом. КОСТА.
Зинкин, А. Н., Зингилевская, Н. Г., & Мусельян, Б. Б. (1997). Криовоздействие в оториноларингологии: методические рекомендации. Краснодар–1997.
Davis, D. A., Pellowski, D. M., & William Hanke, C. (2004). Preparation of frozen sections. Dermatologic surgery, 30(12p1), 1479-1485.
Ushenko, V. A., & Dubolazov, A. V. (2013, September). Correlation and self similarity structure of polycrystalline network biological layers Mueller matrices images. In Applications of Digital Image Processing XXXVI (Vol. 8856, p. 88562D). International Society for Optics and Photonics.
Ushenko, V. A., Pavlyukovich, N. D., & Trifonyuk, L. (2013). Spatial-frequency azimuthally stable cartography of biological polycrystalline networks. International Journal of Optics, 2013, 683174. doi: 10.1155/2013/683174.
Ushenko, V. A., & Gorsky, M. P. (2013). Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer. Optics and Spectroscopy, 115(2), 290-297.
Ushenko, Y. A., Ushenko, V. A., Dubolazov, A. V., Balanetskaya, V. O., & Zabolotna, N. I. (2012). Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma. Optics and Spectroscopy, 112(6), 884-892.
Ushenko, Y. A., Dubolazov, A. V., Balanetskaya, V. O., Karachevtsev, A. O., & Ushenko, V. A. (2012). Wavelet-analysis of polarization maps of human blood plasma. Optics and Spectroscopy, 113(3), 332-343.
Ushenko, V. O. (2013). Spatial-frequency polarization phasometry of biological polycrystalline networks. Optical Memory and Neural Networks, 22(1), 56-64.
Ungurian, V. P., Ivashchuk, O. I., & Ushenko, V. O. (2011, November). Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations. In Tenth International Conference on Correlation Optics (Vol. 8338, p. 83381L). International Society for Optics and Photonics.
Ushenko, V. A., Dubolazov, O. V., & Karachevtsev, A. O. (2014). Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer. Applied optics, 53(10), B128-B139.
Prysyazhnyuk, V. P., Ushenko, Y. A., Dubolazov, A. V., Ushenko, A. G., & Ushenko, V. A. (2016). Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Applied optics, 55(12), B126-B132.
Goodman, J. W. (1975). Statistical properties of laser speckle patterns. In Laser speckle and related phenomena (pp. 9-75). Springer, Berlin, Heidelberg.
Robinson, S. P. (Ed.). (1996). Principles of forensic medicine. Cambridge University Press. P.188.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).