Моделювання перерозподілу білка і солі при висушуванні розчину з квадратної кювети

  • D. M. Glibitskiy Інститут радіофізики та електроніки ім. О. Я. Усикова НАН України, вул. Ак. Проскури 12, м. Харків, 61085, Україна https://orcid.org/0000-0002-1000-7770
Ключові слова: випаровування, моделювання, білок, сіль, квадратна кювета

Анотація

Актуальність. Висихання біологічних рідин та сольових розчинів біополімерів є активно досліджуваною темою, оскільки текстури плівок, що залишаються на підложці після випаровування, несуть інформацію про стан організму або біополімера. В наших попередніх роботах було показано, що площа текстур та здатність до формування зигзагоподібних патернів кристалізації залежать від структурного стану біополімера. Моделювання течій та перерозподілу часток для стандартного випадку круглої сидячої краплі проводилося багатьма авторами, але в наших експериментах розчин повністю заповнює квадратну кювету до рівня її стінок, що створює інші умови випаровування та хід процесу висихання.

Мета роботи. Провести чисельне моделювання випаровування рідини та викликаного ним руху частинок БСА і NaCl для квадратної кювети 20×1×20 мм3.

Матеріали і методи. Моделювання випаровування рідини здійснювалося у пакеті моделювання суцільних середовищ OpenFOAM із застосуванням модулю interThermalPhaseChangeFoam, а перерозподіл концентрацій часток (БСА, Na+ і Cl) у розчині моделювався методом зміщеного випадкового блукання на дискретній Декартовій решітці.

Результати. Згідно з отриманими результатами, впродовж основного часу сушки течії у рідині направлені від кутів до центра кювети та від діагоналей до стінок кювети, що призводить до накопичення значної долі частинок біля стінок. Коли поверхня рідини у центральній частині кювети торкається дна, сили поверхневого натягу швидко відтягують розчин до стінок кювети, хоча невелика кількість рідини може залишитися у центрі у вигляді краплі. Після повного висихання, основна кількість частинок БСА і NaCl, що не осіла біля стінок кювети, виявилася зосередженою на відстані 1–3 мм від країв кювети у вигляді закругленої смуги. Невелика кількість БСА також присутня у центральній частині кювети, тоді як решта солі рівномірно розподілена по всій площі кювети завдяки більшій дифузивності.

Висновки. Беручи до уваги експериментальні розподіли текстур, ці результати свідчать на користь гіпотез, що текстури не утворюються за відсутності біополімера, а зигзагоподібні патерни формуються у ділянках з високою швидкістю висушування.

Завантаження

Дані завантаження ще не доступні.

Посилання

Annarelli, C. C., Reyes, L., Fornazero, J., Bert, J., Cohen, R., & Coleman, A. W. (2000). Ion and molecular recognition effects on the crystallisation of bovine serum albumin-salt mixtures. Crystal Engineering, 3, 173 194.

Bhardwaj, R., Fang, X., Somasundaran, P., & Attinger, D. (2010). Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram. Langmuir, 26(11), 7833-7842. doi: 10.1021/la9047227

Bondi, A. (1964). Van der Waals Volumes and Radii. Journal of Physical Chemistry, 68(3), 441-451. doi: 10.1021/j100785a001

Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface-tension. Journal of Computational Physics, 100(2), 335-354.

Brutin, D., Sobac, D., Loquet, B., & Sampol, J. (2011). Pattern formation in drying drops of blood. Journal of Fluid Mechanics, 667, 85-95. doi: 10.1017/S0022112010005070

Buscall, R., D’Haene, P., & Mewis, J. (1994). Maximum density for flow of dispersions of near monodisperse spherical-particles. Langmuir, 10, 1439-1441. doi: 10.1021/la00017a020

Busscher, N., Kahl, J., Andersen, J. O., Huber, M., Mergardt, G., Doesburg, P., …Ploeger A. (2010). Standardization of the Biocrystallization Method for Carrot Samples. Biological Agriculture and Horticulture, 27, 1-23. doi: 10.1080/01448765.2010.10510427

Chen, G., & Mohamed, G. J. (2010). Complex protein patterns formation via salt-induced self-assembly and droplet evaporation. European Physical Journal. E., 33, 19-26. doi: 10.1140/epje/i2010-10649-4

Chen, R., Zhang, L., Zang, D., & Shen, W. (2016). Blood Drop Patterns: Formation and Applications. Advances in Colloid and Interface Science, 231, 1-14. doi: 10.1016/j.cis.2016.01.008

Choudhury, M. D., Dutta, T., & Tarafdar, S. (2013). Pattern formation in droplets of starch gels containing NaCl dried on different surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432, 110 118. DOI: 10.1016/j.colsurfa.2013.04.064

Cox, J. D., Wagman, D. D., & Medvedev, V. A. (1989). CODATA – Key Values for Thermodynamics, aus der Reihe: CODATA, Series on Thermodynamic Properties. New York, Washington, Philadelphia, London: Hemisphere Publishing Corporation.

Crivoi, A., & Duan, F. (2014). Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets. Scientific Reports, 4, Article ID 4310. doi: 10.1038/srep04310

Dai, S., Zhang, X., Du, Z., & Dang, H. (2005). Fabrication of nanopatterned DNA films by Langmuir-Blodgett technique. Materials Letters, 59, 423-429. doi: 10.1016/j.matlet.2004.09.038

Darwich, S., Mougin, K., & Haidara, H. (2012). From highly ramified, large scale dendrite patterns of drying ‘‘alginate/Au NPs’’ solutions to capillary fabrication of lab-scale composite hydrogel microfibers. Soft Matter, 8, 1155-1162. doi: 10.1039/C1SM06623D

Dean, J. A., & Lange, N. A. (1999). Lange's Handbook of Chemistry (15th ed.). New York, N.Y.: McGraw-Hill Professional.

Engländer, T., Wiegel, D., Naji, L., & Arnold, K. (1996). Dehydration of Glass Surfaces Studied by Contact Angle Measurements. Journal of Colloid and Interface Science, 179(2), 635-636. doi: 10.1006/jcis.1996.0260

Farr, R. S., & Groot, R. D. (2009). Close packing density of polydisperse hard spheres. Journal of Chemical Physics, 131, 244104. doi: 10.1063/1.3276799

Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Cheipesh, T. A., Roshal, A. D., Zibarov, A. M., …Glibitskiy G. M. (2018). Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures. Radiation Physics and Chemistry, 144, 231-237. doi: 10.1016/j.radphyschem.2017.08.019

Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Shestopalova, A. V., & Semenov, M. A. (2017). Characterization of zigzag patterns on the surface of bovine serum albumin films. Biophysical Bulletin, 37(1), 16-29.

Glibitskiy, G. M., Glibitskiy, D. M., Gorobchenko, O. A., Nikolov, O. T., Roshal, A. D., Semenov, M. A., & Gasan, A. I. (2015). Textures on the surface of BSA films with different concentrations of sodium halides and water state in solution. Nanoscale Research Letters, 10(1), Article ID 155. doi: 10.1186/s11671-015-0860-0

Glibitskiy, G. M., Jelali, V. V., Semenov, M. O., Roshal, A. D., Glibitskiy, D. M., Volyanskiy, O. Yu., & Zegrya, G. G. (2012). Interaction of DNA with Silver Nanoparticles. Ukrainian Journal of Physics, 57(7), 695-699.

Gorr, H. M., Zueger, J. M., McAdams, D. R., & Barnard, J. A. (2013). Salt-induced pattern formation in evaporating droplets of lysozyme solutions. Colloids and Surfaces B: Biointerfaces, 103, 59-66. doi: 10.1016/j.colsurfb.2012.09.043

Hua, H., & Larson, R. G. (2006). Marangoni Effect Reverses Coffee-Ring Depositions. Journal of Physical Chemistry B, 110, 7090-7094. doi: 10.1021/jp0609232

Hussain, A. A., Abashar, M. E. E., & Al-Mutaz, I. S. (2006). Effect of Ion Sizes on Separation Characteristics of Nanofiltration Membrane Systems. Journal of King Saud University, 19, Eng. Sci. 1. 1-19.

Jachimska, B., & Pajor, A. (2012). Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochemistry, 87, 138-146. doi: 10.1016/j.bioelechem.2011.09.004

Jung, N., Seo, H. W., Leo, P. H., Kim, J., Kim, P., & Yoo, C. S. (2017). Surfactant effects on droplet dynamics and deposition patterns: A lattice gas model. Soft Matter, 13, 6529-6541. doi: 10.1039/C7SM01224A.

Khatir, N. M., Banihashemian, S. M., Periasamy, V., Majid, W. H., Rahman, S. A., & Shahhosseini, F. (2011). DNA Strand Patterns on Aluminium Thin Films. Sensors, 11, 6719-6727. doi: 10.3390/s110706719

Killeen, A. A., Ossina, N., McGlennen, R. C., Minnerath, S., Borgos, J., Alexandrov, V., & Sarvazyan, A. (2006). Protein Self-Organization Patterns in Dried Serum Reveal Changes in B-Cell Disorders. Molecular Diagnosis & Therapy, 10(6), 371-380. doi: 10.1007/BF03256214

Kokornaczyk, M. O., Dinelli, G., Marotti, I., Benedettelli, S., Nani, D., & Betti, L. (2011). Self-Organized Crystallization Patterns from Evaporating Droplets of Common Wheat Grain Leakages as a Potential Tool for Quality Analysis. The Scientific World Journal, 11, 1712-1725. doi: 10.1100/2011/937149

Krieger, I. M., & Dougherty, T. J. (1959). A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology, 3, 137-152. doi: 10.1122/1.548848

Lazar, A. N., Shahgaldian, P., & Coleman, A. W. (2001). Anion Recognition Effects in the Structuring of Bovine Serum Albumin Films. Journal of Supramolecular Chemistry, 1, 193-199.

Mayeres, C. H., Lee, S. A., Pinnick, D. A., Carter, B. J., & Kim, J. (1995). A study of Na-DNA films containing NaCl via scanning electron and tunneling microscopies. Biopolymers, 36, 669-673. doi: 10.1002/bip.360360512

Meeker, S. P., Poon, W. C. K., & Pusey, P. N. (1997). Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids. Physical Review E, 55, 5718-5722. doi: 10.1103/PhysRevE.55.5718

Megen, W. van, & Underwood, S. M. (1994). Glass transition in colloidal hard spheres: Measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Physical Review E, 49, 4206-4220. doi: 10.1103/PhysRevE.49.4206

Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., De Bièvre, P., Gröning, M., …Prohaska, T. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88(3), 265 291. doi: 10.1515/pac-2015-0305

Nabil, M., & Rattner, A. S. (2016). interThermalPhaseChangeFoam – A framework for two-phase flow simulations with thermally driven phase change. SoftwareX, 5, 216-226. doi: 10.1016/j.softx.2016.10.002

OpenFOAM v5 User Guide: 5.2 Boundaries. Retrieved from https://cfd.direct/openfoam/user-guide/boundaries/

Phan, S. E., Russel, W. B., Cheng, Z., & Zhu, J. (1996). Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Physical Review E, 54, 6633-6645. doi: 10.1103/PhysRevE.54.6633

Pusey, P. N., & van Megen, W. (1986). Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature, 320, 340-342. doi: 10.1038/320340a0

Putnam, F. W. (1975). The Plasma Proteins: Structure, Function and Genetic Control. Vol. 1 (2nd ed). New York: Acad. Press.

Rattner, A. S., & Garimella, S. (2014). Simple Mechanistically Consistent Formulation for Volume-of-Fluid Based Computations of Condensing Flows. Journal of Heat Transfer, 136, 071501-1 - 071501-9. doi: 10.1115/1.4026808

Raz, E., Lipson, E., & Ben-Jacob, E. (1991). New periodic morphologies observed during dentritic growth of ammonium chloride crystals in thin layers. Journal of Crystal Growth, 108, 637-647. doi: 10.1016/0022-0248(91)90243-X

Sclavi, B., Peticolas, W. L., & Powell, J. W. (1994). Fractal-like patterns in DNA films, B form at 0% relative humidity, and antiheteronomous DNA: an IR study. Biopolymers, 34, 1105-1113.

Tarasevich, Yu. Yu., Vodolazskaya, I. V., & Bondarenko, O. P. (2013). Modeling of spatial-temporal distribution of the components in the drying sessile droplet of biological fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432, 99-103.

Wagner, W., & Pruss, A. (2002). The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. Journal of Physical and Chemical Reference Data, 31, 387 535.

Wise, S. A., & Watters, R. L. (2014). Bovine Serum Albumin (7% Solution). Certificate of Analysis. United States National Institute of Standards & Technology. Retrieved from https://www-s.nist.gov/srmors/certificates/927d.pdf

Yakhno, T. A. (2015). Sodium chloride crystallization from drying drops of albumin-salt solutions with different albumin concentrations. Technical Physics, 60(11), 1601-1608. doi: 10.1134/S1063784215110262

Zhong, X., Crivoi, A., & Duan, F. (2015). Sessile nanofluid droplet drying. Advances in Colloid and Interface Science, 217, 13-30. doi: 10.1016/j.cis.2014.12.003

Опубліковано
2018-06-21
Цитовано
0 статей
Як цитувати
Glibitskiy, D. (2018). Моделювання перерозподілу білка і солі при висушуванні розчину з квадратної кювети. Біофізичний вісник, 1(39), 51-70. https://doi.org/10.26565/2075-3810-2018-39-05
Розділ
Методи біофізичних досліджень