Software-hardware complex for optimization of transporting abilities of vacuum arc filters

  • Д. С. Аксёнов Национальный Научный Центр «Харьковский физико-технический институт»
  • И. И. Аксёнов Национальный Научный Центр «Харьковский физико-технический институт»
  • В. Е. Стрельницкий Национальный Научный Центр «Харьковский физико-технический институт»
Keywords: vacuum arc, filter, probe, ion current, plasma transport

Abstract

This work describes optimization of multichannel probe, which in couple with the written for its work software presents a modern tool for adjustment and study of transporting abilities of vacuum arc plasma sources. Influence of magnetic field created by coils of T-shaped filter on spatial distribution of output ion current was investigated. Optimal values of coils currents, which allow one to increase productivity of studied device, were determined.

 

 

Downloads

Download data is not yet available.

Author Biographies

Д. С. Аксёнов, Национальный Научный Центр «Харьковский физико-технический институт»
с.н.с.
И. И. Аксёнов, Национальный Научный Центр «Харьковский физико-технический институт»
с.н.с.
В. Е. Стрельницкий, Национальный Научный Центр «Харьковский физико-технический институт»
с.н.с.

References

Anders A. Cathodic Arcs: From Fractal Spots to Energetic Condensation. — New York: Springer, 2008. — 542 p.

Anders A., Oks E. M., Yushkov G. Y. et al. Measurements of the total ion flux from vacuum arc cathode spots // IEEE Trans. Plasma Sci. — 2005. — Vol. 33. — P. 1532–1536.

Аксёнов И. И., Андреев А. А., Белоус В. А., Стрельницкий В. Е., Хороших В. М. Вакуумная дуга: источники плазмы, осаждение покрытий, поверхностное модифицирование. — Киев: Наукова думка, 2012. — 728 с.

Anders A., MacGill R. A. Asymmetric Injection of Cathodic Arc Plasma into a Macroparticle Filter // J. Appl. Phys. — 2004. — Vol. 95. — P. 7602–7606.

Kleiman A., Márquez A., Boxman R. L. Performance of a magnetic island macroparticle filter in a titanium vacuum arc // Plasma Sources Sci. Technol. — 2008. — Vol. 17. —P. 015008-1–7.

Zhitomirsky V. N., Zarchin O., Wang Sh. G. et al. Ion Current Produced by a Vacuum Arc Carbon Plasma Source // IEEE Trans. Plasma Sci. — 2001. — Vol. 29, No. 5. — P. 776–780.

Baranov O., Romanov M., Ostrikov K. Effective control of ion fluxes over large areas by
magnetic fields: From narrow beams to highly uniform fluxes // Physics of Plasmas. — 2009. — Vol. 16. — P. 053505-1–5.

Yukimura K., Muraho T., Ma X., Ikehata T. Ion current distribution on a 200-mm-diameter disk target by titanium cathodic arc plasma-based ion implantation and deposition // Surf. Coat. Technol. — 2004. — Vol. 186. — P. 104–107.

Бизюков Ю. А., Васильев В. В., Лучанинов А. А., Стрельницкий В. Е. Автоматизированная система измерения пространственного распределения плотности ионного тока в потоке плазмы // Сб. тр. Харьковской нанотехнологической ассамблеи. — Харьков: Тонкие плёнки, 2007. — С. 232–235.

Zhitomirsky Y. N., Kinrot U., Alterkop B. Influence of gas pressure on the ion current and its distribution in a filtered vacuum arc deposition system // Surf. Coat. Technol. — 1996. — Vol. 86–87. — P. 263–270.

Aksyonov D. S., Aksenov I. I., Luchaninov A. A. et al. Plasma Streams Mixing in Two-Channel T-Shaped Magnetic Filter // Problems of Atomic Science and Technology. Ser. Vacuum, Pure Materials, Superconductors. — 2011. — No. 6. — P. 116–120.

Aksenov I. I. A vacuum arc in erosion plasma sources. — Kharkiv: NSC KIPT, 2005. — 212 p.
Published
2017-04-27
How to Cite
Аксёнов, Д. С., Аксёнов, И. И., & Стрельницкий, В. Е. (2017). Software-hardware complex for optimization of transporting abilities of vacuum arc filters. Journal of Surface Physics and Engineering, 1(4), 361-372. Retrieved from https://periodicals.karazin.ua/pse/article/view/8499

Most read articles by the same author(s)