Особенности распыления кремниевых и углеродных мишеней ускоренными ионами фуллерена C60
Анотація
УроботідослідженозакономірностіроступлівокіерозіїповерхніприопроміненнімішенейзвуглецюікремніюпучкомприскоренихіонівС60 зенергієювінтервалі 2,5–24 кеВпритемпературімішеней 373 K. Встановлено, щозростаннявуглецевихплівокнаповерхніопромінюютьсякремнієвихмішенейспостерігаєтьсядоенергійіонів 7 кеВ, анаповерхнівуглецюдо 19 кеВ. При енергії іонів вище зазначених значень плівка на поверхні не формується і спостерігається ерозія матеріалу мішеней. Досліджено структуру та механічні властивості вуглецевих плівок, вирощених в інтервалі енергій іонів фулерену 2,5–11,5кеВ.Завантаження
##plugins.generic.usageStats.noStats##
Посилання
1. Toyoda N., Yamada I. Gas cluster ion beam equipment and applications for surface processing // Plasma Science, IEEE Transactions on. — 2008. — Vol. 36, No. 4. — P. 1471–1488.
2. Utke I., Moshkalev S., Russell P. (ed.). Nanofabrication using focused ion and electron beams: principles and applications. — Oxford University Press, 2012. — 840 p.
3. Majeski M. W., Bolotin I. L., Hanley L. Cluster Beam Deposition of Cu2 — XS Nanoparticles into Organic Thin Films // ACS applied materials & interfaces. — 2014. — Vol. 6, No. 15. — P. 12901–12908.
4. Popok V. N. et al. Cluste r— surface interaction: From soft landing to implantation // Surface Science Reports. — 2011. — Vol. 66, No. 10. — P. 347–377.
5. Kawasaki Y., Shibahara K. Effects of B18Hx + and B18Hx dimer ion implantations on crystallinity and retained B dose in silicon // Journal of Vacuum Science & Technology A. — 2012. — Vol. 30, No. 1. — P. 011601.
6. Toyoda N. et al. Refilling and Planarization of Patterned Surface with Amorphous Carbon Films by Using Gas Cluster Ion Beam Assisted Deposition // Japanese Journal of Applied Physics. — 2010. — Vol. 49, No. 6S. — P. 06GH13.
7. Bourelle E. et al. Sidewall polishing with a gas cluster ion beam for photonic device applications // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2005. — Vol. 241, No. 1. — P. 622–625.
8. Seki T. Nano-processing with gas cluster ion beams // Surface and Coatings Technology. — 2009. — Vol. 203, No. 17. — P. 2446–2451.
9. MacCrimmon R. et al. Gas cluster ion beam infusion processing of semiconductors //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2006. — Vol. 242, No. 1. — P. 427–430.
10. Yamada I. et al. Non-linear processes in the gas cluster ion beam modification of solid surfaces // Materials Science and Engineering: A. — 1998. — Vol. 253, No. 1. — P. 249–257.
11. Popok V. N., Campbell E. E. B. Beams of atomic clusters: Effects on impact with solids //Rev. Adv. Mater. Sci. — 2006. — Vol. 11, No. 1. — P. 19–45.
12. Yamada I. et al. Nano-processing with gas cluster ion beams //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2000. — Vol. 164. — P. 944–959.
13. Морозов С. Н., Расулев У. Х. Эмиссия ква¬зитепловых ионов при бомбардировке твердого тела кластерными ионами // Журнал технической физики. — 2009. — Т. 79. — №. 7.
14. Matsuo J. et al. Sputtering of elemental metals by Ar cluster ions //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 1997. — Vol. 121, No. 1. — P. 459–463.
15. Pukha V. E. et al. Nanocrystalline diamond thin films deposited from C60 monoenergetic fullerene ion beam // Journal of nanoscience and nanotechnology. — 2007. — Vol. 7, No. 4–5. — P. 1370–1376.
16. Krantzman K. D., Webb R. P., Garrison B. J. Simulations of C60 bombardment of Si, SiC, diamond and graphite // Applied Surface Science. — 2008. — Vol. 255, No. 4. — P. 837–840.
17. Kulevoy T. V. et al. Molecular Ion Beam Transportation for Low Energy Ion Implantation //Ion implantation technology 2101: 18th International Conference on Ion Implantation Technology IIT 2010. — AIP Publishing, 2011. — Vol. 1321, No. 1. — P. 476–479.
18. Winograd N. Molecular depth profiling // Surface and Interface Analysis. — 2013. — Vol. 45, No. 1. — P. 3–8.
19. Winograd N. The magic of cluster SIMS // Analytical Chemistry. — 2005. — Vol. 77, No. 7. — P. 142 A–149 A.
20. Chen Y. Y. et al. X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering // Analytical chemistry. — 2008. — Vol. 80, No. 2. — P. 501–505.
21. Pukha V. E. et al. Growth of nanocomposite films from accelerated C60 ions //Journal of Physics D: Applied Physics. — 2012. — Vol. 45, No. 33. — P. 335302.
22. Pukha V. E. et al. Synthesis, structure and properties of superhard nanostructured films deposited by the C60 ion beam //Journal of nanoscience and nanotechnology. — 2012. — Vol. 12, No. 6. — P. 4762–4768.
23. Oleksiy V. Penkov, Volodymyr E. Pukha, Evgeniy N. Zubarev, Shin — Sung Yoo, Dae — Eun Tribological properties of nanostructured DLC coatings deposited by C60 ion beam // Tribology International. — 2013. — Vol. 60, — Р. 127–135.
24. Krantzman K. D., Kingsbury D. B., Garrison B. J. Bombardment induced surface chemistry on Si under keV C60 impact // Applied surface science. — 2006. — Vol. 252, No. 19. — P. 6463–6465.
25. Krantzman K. D., Garrison B. J. Theoretical Study of the Role of Chemistry and Substrate Characteristics in C60 keV Bombardment of Si, SiC, and Diamond by Molecular Dynamics Simulations // The Journal of Physical Chemistry C. — 2009. — Vol. 113, No. 8. — P. 3239–3245.
26. Krantzman K. D., Kingsbury D. B., Garrison B. J. Cluster induced chemistry at solid surfaces: Molecular dynamics simulations of keV C60 bombardment of Si // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2007. — Vol. 255, No. 1. — P. 238–241.
27. Kozole J., Winograd N. Controlling energy deposition during the C60+ bombardment of silicon: The effect of incident angle geometry // Applied Surface Science. — 2008. — Vol. 255, No. 4. — P. 886–889.
28. Ионов Н. И. Исследование газоразрядной и космической плазмы с помощью многоэлектродных зондов // Ж. техн. физ. — 1964. — Т. 34. — 769 c.
29. Windt D. L. IMD — Software for modeling the optical properties of multilayer films // Computers in Physics — 1998. — Vol. 12. — P. 360–370.
30. Stearns D. G, Gaines D. P., Sweeney D. — W., Gullikson E. M. Nonspecular X-ray scattering in a multilayer—coated imaging system // J. of applied physics. — 1998. — Vol. 84. — P. 1003–1028.
31. Gaber H. et al. Carbon films of amorphous and oriented graphitic structure from fullerene ion beam deposition // The Journal of Physical Chemistry. — 1993. — Vol. 97, No. 31. — P. 8244–8249.
32. Бериш Р., Молчанов В. А. (ред.). Распыление твердых тел ионной бомбардировкой: Физическое распыление одноэлементных твердых тел. — Мир, 1984.— Вып.1. — 253 c.
33. Sigmund P. Recollections of fifty years with sputtering // Thin Solid Films. — 2012. — Vol. 520, No. 19. — P. 6031–6049.
34. Weissmantel C. et al. Preparation and properties of hard i C and i — BN coatings // Thin Solid Films. — 1982. — Vol. 96, No. 1. — P. 31–44.
35. Aoki T. et al. Molecular dynamics simulation of a carbon cluster ion impacting on a carbon surface // Materials chemistry and physics. — 1998. — Vol. 54, No. 1. — P. 139–142.
36. Krantzman K. D., Briner C. A., Garrison B. J. Investigation of Carbon Buildup in Simulations of Multi — Impact Bombardment of Si with 20 keV C60 Projectiles // J. Phys. Chem. A. — 2014. — Vol. 118, No. 37. — P 8081–8087.
37. Никольский Б. П. Справочник химика: «Химия», 1966. — Т. 1.— 1072 c.
38. Лебедев А. А., Давыдов С. Ю. Вакансионная модель процесса гетерополитипной эпитаксии SiC // Физика и техника полупроводников. — 2005. — Т. 39. — № 3. — С. 296–299.
39. Dawson J. C., Adkins C. J. Conduction mechanisms in amorphous carbon prepared by ion — beam sputtering // Journal of Physics: Condensed Matter. — 1995. — Vol. 7, No. 31. — 6297 p.
40. Donnet C., Erdemir A. Tribology of diamond — like carbon films: fundamentals and applications. — Springer, 2007. — 662 p.
2. Utke I., Moshkalev S., Russell P. (ed.). Nanofabrication using focused ion and electron beams: principles and applications. — Oxford University Press, 2012. — 840 p.
3. Majeski M. W., Bolotin I. L., Hanley L. Cluster Beam Deposition of Cu2 — XS Nanoparticles into Organic Thin Films // ACS applied materials & interfaces. — 2014. — Vol. 6, No. 15. — P. 12901–12908.
4. Popok V. N. et al. Cluste r— surface interaction: From soft landing to implantation // Surface Science Reports. — 2011. — Vol. 66, No. 10. — P. 347–377.
5. Kawasaki Y., Shibahara K. Effects of B18Hx + and B18Hx dimer ion implantations on crystallinity and retained B dose in silicon // Journal of Vacuum Science & Technology A. — 2012. — Vol. 30, No. 1. — P. 011601.
6. Toyoda N. et al. Refilling and Planarization of Patterned Surface with Amorphous Carbon Films by Using Gas Cluster Ion Beam Assisted Deposition // Japanese Journal of Applied Physics. — 2010. — Vol. 49, No. 6S. — P. 06GH13.
7. Bourelle E. et al. Sidewall polishing with a gas cluster ion beam for photonic device applications // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2005. — Vol. 241, No. 1. — P. 622–625.
8. Seki T. Nano-processing with gas cluster ion beams // Surface and Coatings Technology. — 2009. — Vol. 203, No. 17. — P. 2446–2451.
9. MacCrimmon R. et al. Gas cluster ion beam infusion processing of semiconductors //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2006. — Vol. 242, No. 1. — P. 427–430.
10. Yamada I. et al. Non-linear processes in the gas cluster ion beam modification of solid surfaces // Materials Science and Engineering: A. — 1998. — Vol. 253, No. 1. — P. 249–257.
11. Popok V. N., Campbell E. E. B. Beams of atomic clusters: Effects on impact with solids //Rev. Adv. Mater. Sci. — 2006. — Vol. 11, No. 1. — P. 19–45.
12. Yamada I. et al. Nano-processing with gas cluster ion beams //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2000. — Vol. 164. — P. 944–959.
13. Морозов С. Н., Расулев У. Х. Эмиссия ква¬зитепловых ионов при бомбардировке твердого тела кластерными ионами // Журнал технической физики. — 2009. — Т. 79. — №. 7.
14. Matsuo J. et al. Sputtering of elemental metals by Ar cluster ions //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 1997. — Vol. 121, No. 1. — P. 459–463.
15. Pukha V. E. et al. Nanocrystalline diamond thin films deposited from C60 monoenergetic fullerene ion beam // Journal of nanoscience and nanotechnology. — 2007. — Vol. 7, No. 4–5. — P. 1370–1376.
16. Krantzman K. D., Webb R. P., Garrison B. J. Simulations of C60 bombardment of Si, SiC, diamond and graphite // Applied Surface Science. — 2008. — Vol. 255, No. 4. — P. 837–840.
17. Kulevoy T. V. et al. Molecular Ion Beam Transportation for Low Energy Ion Implantation //Ion implantation technology 2101: 18th International Conference on Ion Implantation Technology IIT 2010. — AIP Publishing, 2011. — Vol. 1321, No. 1. — P. 476–479.
18. Winograd N. Molecular depth profiling // Surface and Interface Analysis. — 2013. — Vol. 45, No. 1. — P. 3–8.
19. Winograd N. The magic of cluster SIMS // Analytical Chemistry. — 2005. — Vol. 77, No. 7. — P. 142 A–149 A.
20. Chen Y. Y. et al. X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering // Analytical chemistry. — 2008. — Vol. 80, No. 2. — P. 501–505.
21. Pukha V. E. et al. Growth of nanocomposite films from accelerated C60 ions //Journal of Physics D: Applied Physics. — 2012. — Vol. 45, No. 33. — P. 335302.
22. Pukha V. E. et al. Synthesis, structure and properties of superhard nanostructured films deposited by the C60 ion beam //Journal of nanoscience and nanotechnology. — 2012. — Vol. 12, No. 6. — P. 4762–4768.
23. Oleksiy V. Penkov, Volodymyr E. Pukha, Evgeniy N. Zubarev, Shin — Sung Yoo, Dae — Eun Tribological properties of nanostructured DLC coatings deposited by C60 ion beam // Tribology International. — 2013. — Vol. 60, — Р. 127–135.
24. Krantzman K. D., Kingsbury D. B., Garrison B. J. Bombardment induced surface chemistry on Si under keV C60 impact // Applied surface science. — 2006. — Vol. 252, No. 19. — P. 6463–6465.
25. Krantzman K. D., Garrison B. J. Theoretical Study of the Role of Chemistry and Substrate Characteristics in C60 keV Bombardment of Si, SiC, and Diamond by Molecular Dynamics Simulations // The Journal of Physical Chemistry C. — 2009. — Vol. 113, No. 8. — P. 3239–3245.
26. Krantzman K. D., Kingsbury D. B., Garrison B. J. Cluster induced chemistry at solid surfaces: Molecular dynamics simulations of keV C60 bombardment of Si // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. — 2007. — Vol. 255, No. 1. — P. 238–241.
27. Kozole J., Winograd N. Controlling energy deposition during the C60+ bombardment of silicon: The effect of incident angle geometry // Applied Surface Science. — 2008. — Vol. 255, No. 4. — P. 886–889.
28. Ионов Н. И. Исследование газоразрядной и космической плазмы с помощью многоэлектродных зондов // Ж. техн. физ. — 1964. — Т. 34. — 769 c.
29. Windt D. L. IMD — Software for modeling the optical properties of multilayer films // Computers in Physics — 1998. — Vol. 12. — P. 360–370.
30. Stearns D. G, Gaines D. P., Sweeney D. — W., Gullikson E. M. Nonspecular X-ray scattering in a multilayer—coated imaging system // J. of applied physics. — 1998. — Vol. 84. — P. 1003–1028.
31. Gaber H. et al. Carbon films of amorphous and oriented graphitic structure from fullerene ion beam deposition // The Journal of Physical Chemistry. — 1993. — Vol. 97, No. 31. — P. 8244–8249.
32. Бериш Р., Молчанов В. А. (ред.). Распыление твердых тел ионной бомбардировкой: Физическое распыление одноэлементных твердых тел. — Мир, 1984.— Вып.1. — 253 c.
33. Sigmund P. Recollections of fifty years with sputtering // Thin Solid Films. — 2012. — Vol. 520, No. 19. — P. 6031–6049.
34. Weissmantel C. et al. Preparation and properties of hard i C and i — BN coatings // Thin Solid Films. — 1982. — Vol. 96, No. 1. — P. 31–44.
35. Aoki T. et al. Molecular dynamics simulation of a carbon cluster ion impacting on a carbon surface // Materials chemistry and physics. — 1998. — Vol. 54, No. 1. — P. 139–142.
36. Krantzman K. D., Briner C. A., Garrison B. J. Investigation of Carbon Buildup in Simulations of Multi — Impact Bombardment of Si with 20 keV C60 Projectiles // J. Phys. Chem. A. — 2014. — Vol. 118, No. 37. — P 8081–8087.
37. Никольский Б. П. Справочник химика: «Химия», 1966. — Т. 1.— 1072 c.
38. Лебедев А. А., Давыдов С. Ю. Вакансионная модель процесса гетерополитипной эпитаксии SiC // Физика и техника полупроводников. — 2005. — Т. 39. — № 3. — С. 296–299.
39. Dawson J. C., Adkins C. J. Conduction mechanisms in amorphous carbon prepared by ion — beam sputtering // Journal of Physics: Condensed Matter. — 1995. — Vol. 7, No. 31. — 6297 p.
40. Donnet C., Erdemir A. Tribology of diamond — like carbon films: fundamentals and applications. — Springer, 2007. — 662 p.
Опубліковано
2015-11-24
Як цитувати
Малеев, М. В., Зубарев, Е. Н., Пуха, В. Е., Дроздов, А. Н., Вус, А. С., & Девизенко, А. Ю. (2015). Особенности распыления кремниевых и углеродных мишеней ускоренными ионами фуллерена C60. Журнал фізики та інженерії поверхні, 13(1), 91 - 104. вилучено із https://periodicals.karazin.ua/pse/article/view/4500
Розділ
Статті
У відповідності з типовим шаблоном.