Ефективність захисних покриттів на основі систем cBN, Ti-B-C та AlN-(Ti-Cr(Si))B2 для різального інструменту
Анотація
Досліджені фізико-механічні властивості наноструктурованих захисних покриттів систем cBN, Ti-B-C та AlN-(Ti-Cr(Si))B2, сформованих іонно-плазмовими методами. Визначені близькі до оптимальних фізико-технологічні параметри формування покриттів вакуумно-дуговим та магнетронним методами. Покриття формувалися на робочі поверхні різального інструменту і здійснювалося їх лабораторне випробування. Доведено, що застосування захисних покриттів підвищує працездатність різального інструменту в 2–3 рази.
Завантаження
Посилання
Klimenko S. A., Klimenko S. A., Manohin A. S., Beresnev V. M. Osobennosti primeneniya rezhuschih instrumentov iz polikristallicheskogo kubicheskogo nitrida bora s zaschitnym pokrytiem // Sverhtverdye materialy. — 2017, No. 4. — P. 88–100.
Musil J. Hard and superhard nanocomposite coatings // Surf. Coat. Tehnol. — 2000. — Vol. 125. — P. 322–330.
Kunc F., Musil J., Mayrhofer R. N., Mitterer F. Low stress superhard Ti-V films prepared magnetron sputtering // Surf. Coat. Techn. — 2003. — Vol. 175. — P. 744–781.
Nanostrukturnye pokrytiya // Pod red. A. Kavalejro i D. de Hossona. M.: Tehnosfera. — 2011. — 792 p.
Berlin E. V., Sejdman L. A. Ionno-plazmennye processy v tonkoplenochnoj tehnologii. M.: Tehnosfera. — 2010. — 528 p.
Aksenov I. I., Andreev A. A., Belous V. A., Strel’nickij V. E., Horoshih V. M. Vakuumnaya duga: istochniki plazmy, osazhdenie pokrytij, poverhnostnoe modificirovanie. K.: Naukova dumka. — 2012. — 727 p.
Azarenkov N. A., Sobol’ O. V., Pogrebnyak A. D., Beresnev V. M., Litovchenko S. V., Ivanov O. N. Materialovedenie neravnovesnogo sostoyaniya modificirovannoj poverhnosti. Sumy: Sumskoj gosudarstvennyj universitet. — 2012. — 683 p.
Emel’yanov V. I., Ruhlyada N. Ya. Defektnoinducirovannaya neustojchivost’ i obrazovanie poverhnostnyh struktur s dvumya masshtabami pri obrabotke poverhnosti plazmoj // Naukoemkie tehnologii. — 2009. — Vol. 10, No. 6. — P. 3–13.
Zel’cer I. A., Karabanov A. S., Moos E. N. Obrazovanie dissipativnyh struktur v kristallah pri termo- i elektroperenose // FTT. — 2005. — Vol. 47, vyp. 11. — P. 1921–1926.
Azarenkov N. A., Sobol’ O. V., Pogrebnyak A. D., Beresnev V. M. Inzheneriya vakuumno-plazmennyh pokrytij. H.: HNU imeni V. N. Karazina. — 2011. — 344 p.
Balmain W. H. Observation on the formation of compounds of boron and silicon with nitrogen and certain metals // Phil. Mag. 1842. — Vol. 21, No. 138. — P. 270–277.
Pakdel A., Zhi C., Bando Y., Golberg D. Low-dimensional boron nitride nanomaterials // Materialstoday. — 2012. — Vol. 15, No. 6. —P. 256–265.
Wentorf R. H. Jr. Cubic Form of Boron Nitride // The Journal of Chemical Physics. — 1957. — Vol. 26, No. 4. — 956 p.
Kurdyumov A. V., Brigun V. F. Turbostratnyj nitrid bora: osobennosti struktury i fazovyh prevraschenij // Nanostrukturnoe nanomaterialovedenie. — 2010. — No. 1. — P. 3–8.
Haubner R., Wilhelm M., Weissenbacher R., Lux B. Boron Nitrides-Properties, Synthesis and Applications. In: D. M. Mingas, M. Jansen (eds) High Performance Non-Oxide Ceramics II. // Springer-Verlag Berlin Heidelberg. — 2002. — P. 1–45.
Batsanov S. S. Features of phase transformations in boron nitride // Diamond & Related Materials. — 2011. — Vol. 20. — P. 660–664.
Örnek M., Reddy K. M., Hwang C., Domnich V., Burgess A., Pratas S., Calado J., Xie K. Y., Miller S. L., Hemker K. J., Haber R. A. Observations of explosion phase boron nitride formed by emulsion detonation synthesis // Scripta Materialia. — 2018. — Vol. 145. — P. 126–130.
Narayan J., Bhaumik A., Xu W. Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures // Lournal of Applied Physics. — 2016. — Vol. 119. — P. 185302.
Narayan J., Bhaumik A. Discovery of Q-BN and Direct Conversion of h-BN into c-BN and Formation of Epitaxial c-BN/Diamond Heterostructures // MRS Advances. Iss 37; nanotechnology. — 2016. — Vol. 1. — P. 2573–2586.
Narayan J., Bhaumik A. Fundamental Discovery of Q-Phases and Direct Conversion of Carbon into Diamond and h-BN into c-BN Chapt I. In: Zhu Y., Maloy S., Liaw P. (eds) Mechanical and Creep Behavior of Advanced Materials // The Minerals, Metals & Materials Series. Springer. — 2017. — 293 p.
Dobrzhinetskaya L. F., Wirth R., Yang J., Hutcheon I. D., Weber P. K., Green H. W. II. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite // PNAS November 17. — 2009. — Vol. 106,
No. 46. — P. 19233–19238.
Dobrzhinetskaya L. F., Wirth R., Yang J., 1Green H. W., Hutcheon I. D., Weber P. K., Grew E. S. Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth’s mantle // American Mineralogist. — 2014. — Vol. 99. — P. 764–772.
Classification (CNMNC) // Mineralogical Magazine. — August 2013. — Vol. 77(6). — P. 2695–2709.
Digonskij S. V. Nekotorye svedeniya iz istorii sinteza kubicheskogo nitrida bora dlya lezvijnogo rezhuschego instrumenta // Al’ternativnaya energetika i ekologiya. — 2014, No. 09 (149). — P. 49–57.
Edited by Y. Chen. Nanotubes and nanosheets. Functionalization and Applications of Boron Nitride and Other Nanomaterials by Taylor & Francis Group, LLCCRC. — 2015. — 607 p.
Lauridsena J., Nedforsb N., Janssonb U., Jensena J., Eklunda P., Hultmana L. TiB-C nanocomposite coatings deposited by magnetron sputtering // Applied Surface Science. — 2012. — Vol. 258. — P. 9907–9912.
Knotek R., Breidenbach F., Jungblut, Loffler F. Superhard Ti-B-C-N coating // Surface and Coatings Technology. — 1990. — Vol. 43– 44. — P. 107–115.
Sanchez-L’opez J. C., Abad M. D., Justo A., Gago R., Endrino J. L., Garcıa-Luisand A. M. Brizuela. Phase composition and tribomechanical properties of Ti-B-C nanocomposite coatings prepared by magnetron sputtering // Journal of Physics D: Applied Physics. — 2012. — Vol. 45. — P. 375–401.
Levashov E. A., Kosayanin V. I., Krukova L. M., Moore J. J., Olson D. L. Structure and properties of Ti-C-B composite thin films produced by sputtering of composite TiC-TiB2 targets // Surface and Coatings Technology. — 1997. — Vol. 92. — P. 34–41.
Abad M. D., Caceres D., Pogozhev Y. S., Shtansky D. V., Sanchez-Lopez J. C. Bonding Structure and Mechanical Properties of Ti-B-C Coatings // Plasma Process and Polymer. — 2009. — Vol. 6. — P. 107–112.
Vereschaka A. S., Vereschaka A. A. Povyshenie effektivnosti instrumenta putem upravleniya sostavom, strukturoj i svojstvami pokrytij // Uprochnyayuschaya tehnologiya i pokrytiya. — 2005. — No. 9. — P. 9–18.
Finkel’ V. M. Fizicheskie osnovy tormozheniya razrusheniya // M.: Metallurgiya. — 1977. — 348 p.
Libovic G. Razrushenie metallov. Matematicheskie osnovy teorii razrusheniya. — M.: Mir. — 1975. — Vol. 2. — 768 p.
Torianik І. N., Beresnev V. M., Pog rebnjak A. D., Sobol O. V., Be res neva Ye. V., Pod cherniaieva I. A., Kropotov A. Yu., Stiervoiedov N. G., Turbin P. V., Kolesnikov D. A., Grankin S. S., Nyemchenko U. S., Srebniuk P. A., Novikov V. Yu. Magnetron sputtering of high temperature composite ceramics AlN-TiB2-TiSi2 // Phys. Surf. Eng. 2013. — Vol. 11, No. 3. — P. 299– 303.
Klimenko S. A., Kopejkina M. Yu., Klimenko S. A., Manohin A. S. Konceptciya pokrytiya dlya rezhuschih instrumentov iz polikristallicheskih kompozitov na osnove kubicheskogo nitrida bora // Іnformacіjnі tehnologії v osvіtі, naucі ta virobnictvі. — 2016, vip. 2(13). — P. 108–114.