PHOTON IRRADIATION AND “HIGH-TEMPERATURE” ELECTRICAL SUPERCONDUCTIVITY OF POLYCOMPONENT METAL-OXIDE COMPOUNDS
Abstract
The paper discusses the possibility of increasing the transition temperature of metal-oxide compounds ("high-temperature" superconductors) to the superconducting state (zero electrical resistance) when irradiating them with a sufficiently powerful photon flow. In this case, in the irradiated substance, as a result of internal photo-ionization, changes occur in both the important parameters of the phonon spectrum and the electrons energy spectrum.
The value of the photon energy must satisfy this condition: hν ≥ W (ν is the photon frequency, W is the energy of the photoinduced chemical reaction. According to the estimates made in the work, the minimum wavelength of photons that can realize the described effect should be characterized by the value l≈10–4m. Photons of this wavelength correspond to infrared light radiation, a flow of sufficient power of which is easily achieved by laser technology.
A change in the parameters of the phonon spectrum and the energy state of electrons in the discussed compounds when they are irradiated with photons causes the formation of an additional number of clusters of special ion complexes (negative U-centers), which are capable of generating quasiparticles: "Cooper" pairs of electrons (bosons).
The formation of clusters of negative U-centers leads to the formation of a special energy spectrum of the electronic subsystem in metal oxides, which allows pair transitions of electrons. Paired electrons carry an electric charge without losing energy. Irradiation of multicomponent metal oxides with optical photons intensifies the process of formation of the maximum possible total length of U-centers clusters, therefore intensifies the process of metal oxides transition to a superconducting state: the temperature of the complete transition of these compounds to the superconducting state Tc can approach the value of the temperature of the opening of a pseudogap in the energy spectrum of electrons that is, this transition is realized at higher temperatures than it occurs under normal conditions.
Downloads
References
2. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu. Phys. Rev. Lett., 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908
3. J. Bardeen, L. N. Cooper, J. R. Schrieffer. Phys. Rev., 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175
4. B. Batlog B. Batlogg, R. J. Cava, A. Jayaraman, R. B. van Dover, G. A. Kourouklis, S. Sunshine, D. W. Murphy, L. W. Rupp, H. S. Chen, A. White, K. T. Short, A. M. Mujsce, and E. A. Rietman. Phys. Rev. Lett., 58, 2333 (1987). https://doi.org/10.1103/PhysRevLett.58.2333
5. H. Jaeger, S. Hofmann, G. Kaiser, K. Schulze, G. Petzow. Phys. C, 153, 133 (1988). https://doi.org/10.1016/0921-4534(88)90517-5
6. Yu. I. Boyko, V. V. Bogdanov, R.V. Vovk. Journal of V. N. Karazin Kharkiv National University. Series “Physics”, 32, 10-13, (2020). https://doi.org/10.26565/2222-5617-2020-32-01
7. P. Strobel, J. Capponi, M. Marezio, P. Monod. Solid State Comm., 64, 513, (1987). https://doi.org/10.1016/0038-1098(87)90770-8
8. K. Yvon, M. Francois. Z. Phys., 76, 413 (1989). https://doi.org/10.1007/BF01307892
9. Ryusuke Matsunaga, Yuki I. Hamada, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, and Ryo Shimano. Phys. Rev. Lett., 111, 057002 (2013). https://doi.org/10.1103/PhysRevLett.111.057002
10. Ryusuke Matsunaga, Naoto Tsuji, Hiroyuki Fujita, Arata Sugioka, Kazumasa Makise, Yoshinori Uzawa, Hirotaka Terai, Zhen Wang, Hideo Aoki, and Ryo Shimano. Science, 345, 1145 (2014). https://doi.org/10.1126/science.1254697
11. Y. Boyko, V. Bogdanov, R. Vovk, B. Grinev. Low. Temp. Phys., 44, 63 (2018). https://doi.org/10.26565/2222-5617-2021-34-03
12. D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri. Science, 331, 189 (2011).
https://doi.org/10.1126/science.1197294