Features of plasmonic enhancement of luminescence of molecular aggregates of cyanine dyes

Keywords: luminescence, exciton, plasmon, cyanine dyes, molecular aggregates, metal nanoparticles, polymer films

Abstract

The article examines the effect of plasmon resonance of gold nanoparticles on the luminescent properties of molecular aggregates (J-aggregates) of two cyanine dyes, PIC and TDBC. It is shown that the luminescence enhancement of J-aggregates due to the exciton-plasmon interaction occurs in a very similar manner for both types of aggregates, namely: the largest enhancement factor is achieved at a distance between J-aggregates and nanoparticles of 15-20 nm, while the exciton delocalization length increases and increasing their lifetime, as well as suppressing the process of exciton self-trapping. However, these effects are more pronounced for PIC J-aggregates than for TDBC J-aggregates, despite the latter exhibiting better excitonic characteristics. It is proposed that the main factor of the detected discrepancies is the different structure of the exciton bands for J-aggregates and, accordingly, the different degree of overlap of their absorption bands with the plasmon resonance band of gold nanoparticles.

Downloads

Download data is not yet available.

References

D. Möbius. Adv. Mater., 7, 437 (1995). https://doi.org/10.1002/adma.19950070503

T. Kobayashi, editor. J-Aggregates, World Scientific, Singapore (1996), 233 p. https://doi.org/10.1142/3168

T. Kobayashi, editor. J-Aggregates, Volume 2, World Scientific, Singapore (2012). 520 p. https://doi.org/10.1142/8226

F. Würthner, T. E. Kaiser, C. R. Saha-Möller. Angew. Chemie Int. Ed., 50, 3376 (2011). https://doi.org/10.1002/anie.201002307

J. L. Bricks, Y. L. Slominskii, I. D. Panas, et al. Methods Appl. Fluoresc., 6, 012001 (2017). https://doi.org/10.1088/2050-6120/aa8d0d

J. Knoester, V. M. Agranovich. Іn Thin Film and Nanostructures: Electronic Excitations in Organic Based Nanostructures, v. 31, edited by V. M. Agranovich and G. F. Bassani, Elsevier Academic Press, London (2003), p. 1. https://doi.org/10.1016/S1079-4050(03)31001-4

O. Kühn, S. Lochbrunner. Іn Quantum Efficiency in Complex Systems, Part II, From Molecular Aggregates to Organic Solar Cells, v. 85, edited by U. Wurfel, M. Thorwart, and E. Weber, Elsevier Academic Press, Heidelberg (2011), p. 47. https://doi.org/10.1016/B978-0-12-391060-8.00002-2

A. V. Sorokin, S. L. Yefimova, Y. V. Malyukin. Іn Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., Hoboken (2018), p. 1. https://doi.org/10.1002/0471440264.pst664

M. Baraclough, S. S. Seetharaman, I. R. Hooper, et al. ACS Photonics, 6, 3003 (2019). https://doi.org/10.1021/acsphotonics.9b01208

M. Furuki, M. Tian, Y. Sato, et al. Appl. Phys. Lett. 77, 472 (2000). https://doi.org/10.1063/1.127014

M. Naruse, H. Mitsu, M. Furuki, et al. Appl. Phys. Lett., 83, 4869 (2003). https://doi.org/10.1063/1.1631743

J. R. Tischler, M. S. Bradley, V. Bulović, et al. Phys. Rev. Lett., 95, 036401 (2005). https://doi.org/10.1103/PhysRevLett.95.036401

J. R. Tischler, M. Scott Bradley, Q. Zhang, et al. Org. Electron., 8, 94 (2007). https://doi.org/10.1016/j.orgel.2007.01.008

B. J. Walker, V. Bulović, M. G. Bawendi. Nano Lett., 10, 3995 (2010). https://doi.org/10.1021/nl1018639

G. M. Akselrod, B. J. Walker, W. A. Tisdale, et al. ACS Nano, 6, 467 (2012). https://doi.org/10.1021/nn203789t

M. J. Gentile, S. Núñez-Sánchez, W. L. Barnes. Nano Lett., 14, 2339 (2014). https://doi.org/10.1021/nl404712t

A. Cacciola, C. Triolo, O. Di Stefano, et al. ACS Photonics, 2, 971 (2015). https://doi.org/10.1021/acsphotonics.5b00197

A. V. Sorokin, I. Y. Ropakova, S. Wolter, et al. J. Phys. Chem., C 123, 9428 (2019). https://doi.org/10.1021/acs.jpcc.8b09338

Y. V. Malyukin, A. V. Sorokin, V. P. Semynozhenko. Low Temp. Phys., 42, 429 (2016). https://doi.org/10.1063/1.4955493

A. V. Sorokin, N. V. Pereverzev, I. I. Grankina, et al. J. Phys. Chem. C, 119, 27865 (2015). https://doi.org/10.1021/acs.jpcc.5b09940

K. S. Song, R. T. Williams. Self-Trapped Excitons, Springer Berlin, Heidelberg (1993), 425 p. https://doi.org/10.1007/978-3-642-85236-7

J. R. Lakowicz, K. Ray, M. Chowdhury, et al. Analyst 133, 1308 (2008). https://doi.org/10.1039/b802918k

C. D. Geddes, editor. Metal-Enhanced Fluorescence, John Wiley & Sons, Inc., Hoboken (2010), 653 p. https://doi.org/10.1002/9780470642795

M. Bauch, K. Toma, M. Toma, et al. Plasmonics. 9, 781 (2014). https://doi.org/10.1007/s11468-013-9660-5

M. Li, S. K. Cushing, N. Wu. Analyst, 140, 386 (2015). https://doi.org/10.1039/C4AN01079E

J. Dong, Z. Zhang, H. Zheng, et al. Nanophotonics, 4, (2015). https://doi.org/10.1515/nanoph-2015-0028

R. Badugu, J. R. Lakowicz. Іn Encyclopedia of Spectroscopy and Spectrometry (Third Edition), edited by J. C. Lindon, G. E. Tranter, and D. W. Koppenaal, 3rd ed., Elsevier (2017), p. 676. https://doi.org/10.1016/B978-0-12-409547-2.12087-6

M. S. Tame, K. R. McEnery, S.K Özdemir, et al. Nat. Phys., 9, 329 (2013). https://doi.org/10.1038/nphys2615

P. Vasa, C. Lienau. ACS Photonics, 5, 2 (2018). https://doi.org/10.1021/acsphotonics.7b00650

T. Itoh, Y. S. Yamamoto, Y. Ozaki. Chem. Soc. Rev., 46, 3904 (2017). https://doi.org/10.1039/C7CS00155J

M. Fox. Quantum Optics : An Introduction, Oxford University Press, New York (2006), 397 p.

J. Bellessa, C. Bonnand, J. C. Plenet, et al. Phys. Rev. Lett., 93, 036404 (2004). https://doi.org/10.1103/PhysRevLett.93.036404

G. P. Wiederrecht, G. A. Wurtz, J. Hranisavljevic. Nano Lett., 4, 2121 (2004). https://doi.org/10.1021/nl0488228

T. Uwada, R. Toyota, H. Masuhara, et al. J. Phys. Chem. C, 111, 1549 (2007). https://doi.org/10.1021/jp067565n

P. Vasa, W. Wang, R. Pomraenke, et al. Nat. Photon., 7, 128 (2013). https://doi.org/10.1038/nphoton.2012.340

N. T. Fofang, T. H. Park, O. Neumann, et al. Nano Lett., 8, 3481 (2008). https://doi.org/10.1021/nl8024278

P. Törmä, W. L. Barnes. Reports Prog. Phys., 78, 013901 (2015). https://doi.org/10.1088/0034-4885/78/1/013901

A. M. Fales, S. J. Norton, B. M. Crawford, et al. Phys. Chem. Chem. Phys., 17, 24931 (2015). https://doi.org/10.1039/C5CP03277F

F. M. Balci, S. Sarisozen, N. Polat, et al. J. Phys. Chem. C, 123, 26571 (2019). https://doi.org/10.1021/acs.jpcc.9b08834

R. Thomas, A. Thomas, S. Pullanchery, et al. ACS Nano, 12, 402 (2018). https://doi.org/10.1021/acsnano.7b06589

A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, et al. J. Phys. Chem. C, 118, 7599 (2014). https://doi.org/10.1021/jp412798u

A. V. Sorokin, N. V. Pereverzev, V. M. Liakh, et al. Funct. Mater., 22, 316 (2015). https://doi.org/10.15407/fm22.03.316

A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, et al. J. Phys. Chem. C, 119, 2743 (2015). https://doi.org/10.1021/jp5102626

A. V. Sorokin, I. I. Grankina, I. I. Bespalova, et al. J. Phys. Chem. C, 124, 10167 (2020) https://doi.org/10.1021/acs.jpcc.0c00583

A. Sorokin, R. Grynyov, I. Grankina, et al. Іn Proc. 2020 IEEE 10th Int. Conf. "Nanomaterials Appl. Prop. N. 2020 (2020). https://doi.org/10.1109/NAP51477.2020.9309537

I. I. Grankina, I. I. Bespalova, S. L. Yefimova, et al. Funct. Mater., 29, 338 (2022). https://doi.org/10.15407/fm29.03.338

A. Izquierdo, S. S. Ono, J.-C. Voegel, et al. Langmuir, 21, 7558 (2005). https://doi.org/10.1021/la047407s

Y. Fu, S.-J. Li, J. Xu, et al. Langmuir, 27, 672 (2011). https://doi.org/10.1021/la104524k

F. C. Spano. J. Chem. Phys., 142, 184707 (2015). https://doi.org/10.1063/1.4919348

L. Shi, T. K. Hakala, H. T. Rekola, et al. Phys. Rev. Lett., 112, 153002 (2014). https://doi.org/10.1103/PhysRevLett.112.153002

T. Quenzel, D. Timmer, M. Gittinger, et al. ACS Nano 16, 4693 (2022). https://doi.org/10.1021/acsnano.1c11398

J. R. Lakowicz. Principles of Fluorescence Spectroscopy, 3rd ed., Springer US, Boston (2006), 960 p. https://doi.org/10.1007/978-0-387-46312-4

F. Herrera, F. C. Spano. Phys. Rev. Lett., 116, 238301 (2016). https://doi.org/10.1103/PhysRevLett.116.238301

Published
2023-11-30
How to Cite
Sorokin, O., Grankina, I., Bespalova, I., & Yefimova, S. (2023). Features of plasmonic enhancement of luminescence of molecular aggregates of cyanine dyes. Journal of V. N. Karazin Kharkiv National University. Series Physics, (39), 26-39. https://doi.org/10.26565/2222-5617-2023-39-02