OPTIMIZATION OF CONDITIONS FOR DISSIPATION-FREE TRANSFER OF ELECTRIC CURRENT USING TWO-LEVEL GRANULAR HIGH- TEMPERATURE SUPERCONDUCTORS OF VARIOUS COMPOSITIONS
Abstract
In order to optimize the conditions for dissipative-free electric current transport, the influence of chemical composition, temperature and magnetic field on phase transitions in model HTSC objects – granular high-temperature superconductors YBa2Cu3O7-δ and DyBa2Cu3O7-δ – was studied. The work investigated the peculiarities of magnetic field penetration into granular high-temperature superconductors of the 1:2:3 type, depending on the presence or absence of magnetically active atoms in their crystal lattice.Large-scale measurements of specific electrical resistance were carried out under conditions of continuous temperature change and discrete change in the external perpendicular magnetic field strength at a constant value of the transport current density.
The influence of the nature of filling the electron shells of the central atoms (Y or REM) in the 1:2:3 HTSC crystal lattice on the occurrence of phase transitions in superconducting granules and in the Josephson medium was investigated. It is shown that the presence of a magnetoactive Dy atom in the HTSC crystal structure has a weak effect on the critical temperatures of phase transitions in superconducting granules, but leads to a significant decrease in the critical temperatures of phase transitions in the Josephson medium. Thus, it is shown that from a wide class of granular superconductors of the 1:2:3 type, only granular superconductors based on HTSC YBa2Cu3O7-δ can be used as the main material for dissipative-free transfer of electric current at the boiling point of liquid nitrogen.
Downloads
References
2. J. N. Rjabinin, L. W. Shubnikow. Nature 134, 286 (1934). https://doi.org/10.1038/134286b0
3. L. V. Shubnikov, V. I. Khotkevich, Yu. D. Shepelev, and Yu. N. Ryabinin. Zh. Eksp. Teor. Fiz. 7, 221 (1935). http://archive.ujp.bitp.kiev.ua/files/journals/53/si/53SI10p. pdf
4. J. G. Bednorz, K. A. Müller. Z. Physik B, Condensed Matter 64, 189 (1986). https://doi.org/10.1007/BF01303701
5. M. Tinkham, C. J. Lobb. Solid State Physics 42, 91 (1989). https://doi.org/10.1016/S0081-1947(08)60080-6
6. B. Ji, M. S. Rzchowski, N. Anand, M. Tinkham. Phys. Rev. B 47, 1, 470 (1993). https://doi.org/10.1103/PhysRevB.47.470
7. L. Ji, R. H. Sohn, G. C. Spalding, C. J. Lobb, and M. Tinkham. Phys. Review. B, 40, 16, 10936 (1990). https://doi.org/10.1103/PhysRevB.40.10936
8. T. S. Orlova, B. I. Smirnov, J. Y. Laval. Phys. Solid State 40, 1088 (1998). https://doi.org/10.1134/1.1130493
9. F. W Fabris, J. Roa-Rojas, P. Pureur. Physica C: Superconductivity, 354, 1–4, 304 (2001). https://doi.org/10.1016/S0921-4534(01)00097-1
10. T. S. Orlova, J. Y Laval. Phys. Solid State 49, 2058 (2007). https://doi.org/10.1134/S1063783407110078
11. Y. Setoyama, J. Shimoyama, S. Yamaki, A. Yamamoto, H. Ogino, K. Kishio and S. Awaji. Supercond. Sci. Technol. 28 015014 (2015). https://doi.org/10.1088/0953-2048/28/1/015014
12. I. Hamadneh, A. M. Rosli, R. Abd-Shukor, N. R. M. Suib, S. Y. Yahya. Journal of Physics: Conference Series 97 (2008) 012063. https://doi.org/10.1088/1742-6596/97/1/012063
13. J. Roa-Rojas. Modern Physics Letters B, 16, 27, 1061 (2002). https://doi.org/10.1142/S021798490200472X
14. M. Diviš, J. Hejtmánek, J. Kamarád, V. Nekvasil. Physica B: Condensed Matter, 223–224, 571 (1996), https://doi.org/10.1016/0921-4526(96)00177-9
15. S. E. Brown, J. D. Thompson, J. O. Willis, R. M. Aikin, E. Zirngiebl, J. L. Smith, Z. Fisk, and R. B. Schwarz. Phys. Rev. B 36, 4, 2298 (1987). https://doi.org/10.1103/PhysRevB.36.2298
16. P. Boonsong, P. Wannasut, S. Buntham, A. Rachakom, C. Sriprachuabwong, A. Tuantranont and A. Watcharapasorn. Chiang Mai J. Sci. 45, 7, 2809 (2018). https://epg.science.cmu.ac.th/ejournal/journal-detail.php?id=9671
17. A. Öztürk, M. Doğan, İ. Düzgün, and S. Çelebi. J Supercond Nov Magn 29, 1787 (2016). https://doi.org/10.1007/s10948-016-3493-3
18. A. N. Jannah, T. C. Lee, W. S. Chow, and R. Abd-Shukor. J Supercond Nov Magn 33, 1293 (2020). https://doi.org/10.1007/s10948-019-05376-2
19. V. A. Finkel, V. V. Toryanik. Low Temperature Physics 23, 618 (1997). https://doi.org/10.1063/1.593476
20. V. M. Arzhavitin, N. N. Efimova, M. B. Ustimenkova, and V. A. Finkel. Phys. Solid State 42, 1398 (2000). https://doi.org/10.1134/1.1307041
21. V. A. Finkel, V. M. Arzhavitin, A. A. Blinkin, V. V. Derevyanko, Yu. Yu. Razdovskii. Physica CSuperconductivity, 235, 303 (1994). 10.1016/0921-4534(94)91375-7
22. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel. Functional Materials 11, 4, 710 (2004). http://functmaterials.org.ua/contents/11-4/11.pdf
23. A. Harabor, P. Rotaru, N. A. Harabor, P. Nozar, A. Rotaru. Ceramics International, 45, 2(B), 2899 (2019) https://doi.org/10.1016/j.ceramint.2018.07.272
24. I. Hamadneh. Electron. Mater. Lett. 10, 597 (2014). https://doi.org/10.1007/s13391-013-3250-8
25. J. L. Gonzalez, C. K. Piumbini, W. L. Scopel, F. Deleprani, A. Gomes, A. Cunha. Ceramics International, 39, 3, 3001 (2013) https://doi.org/10.1016/j.ceramint.2012.09.078
26. W. E. Farneth, R. K. Bordia, E. M. McCarron, M. K. Crawford, R. B. Flippen. Solid State Communications, 66, 9, 953 (1988), https://doi.org/10.1016/0038-1098(88)90545-5
27. P. U. Muralidharan. Physica status solidi (a), 123, K39, (1992). https://doi.org/10.1002/pssa.2211230144
28. D. A. Steyn-Ross, M. L. Steyn-Ross, L. C. Wilcocks, and J. W. Sleigh. Physical Review E, 64, 1, 011917 (2001). https://doi.org/10.1103/PhysRevE.64.011918
29. M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, M. T. Wilson, L. C. Wilcocks. Physical Review E, 72, 6, 061910 (2005). https://doi.org/10.1103/PhysRevE.72.061910.
31. A. M. Bovda, V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel. Functional Materials, 21, 3, 360 (2014). https://doi.org/10.15407/fm21.03.360
32. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel, and Yu. N. Shahov. Functional Materials 22, 3, 332 (2015). http://doi.org/10.15407/fm22.03.332
33. G. Blatter, M. V. Feigelman, V. B. Geshkenbein, I. Larkin, and V. M. Vinokur. Rev. Mod. Phys. 66, 1125 (1994). https://doi.org/10.1103/RevModPhys.66.1125
34. C. A. M. dos Santos, C. J. V. Oliveira, M. S. da Luz, A. D. Bortolozo, M. J. R. Sandim, and A. J. S. Machado. Phys. Rev. B 74, 18, 184526 (2006). https://doi.org/10.1103/PhysRevB.74.184526
35. S. L. Ginzburg. J. Exp. Theor. Phys. 79, 2, 334 (1994). 36. S. L. Ginzburg, O. V. Gerashchenko, and A. I. Sibilev. Supercond. Sci. Technol. 10, 395 (1997). https://doi.org/10.1088/0953-2048/10/6/003
37. T. V. Sukhareva and V. A. Finkel. Phys. Solid State 52, 8, 1585 (2010). 10.1134/S1063783410080044
38. V. V. Slavkin and E. A. Tishchenko. J. Low Temp. Phys. 40, 3, 185 (2014). https://doi.org/10.1063/1.4869572
39 V. Ambegaokar and B. I. Halperin. Phys. Rev. Lett. 22, 25, 1364 (1969). https://doi.org/10.1103/PhysRevLett.22.1364
40. M. I. Petrov, D. A. Balaev, K. A. Shaikhutdinov, and C. G. Ovchinnikov. Phys. Solid State 40, 1451 (1998). https://doi.org/10.1134/1.1130601
41. M. I. Petrov, D. A. Balaev, K. A. Shaikhutdinov, and B. P. Khrustalev. Phys. Solid State 39, 1749 (1997). https://doi.org/10.1134/1.1130163
42. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel, and Yu. N. Shakhov. Phys. Solid State 56, 649 (2014). https://doi.org/10.1134/S1063783414040076




3.gif)