The classical boundary problem of the transition of a spherical type-I superconductor to the normal state with increasing of the applied uniform magnetic field (methodical development)

  • O. G. Ort Physics Department, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine
  • N. R. Vovk Physics Department, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine http://orcid.org/0000-0001-8697-4452
Keywords: spherical superconductor, magnetic field, intermediate state, normal state, local London electrodynamics, nonlocal Pippard electrodynamics, Meissner-Ochsenfeld effect, penetration depth, boundary value problem, differential equations, boundary conditions

Abstract

A complicated boundary value problem of the transition of a macroscopic massive spherical type-I superconductor to the intermediate and normal state with increasing of the applied uniform magnetic field has been solved. Taking into account a penetration effect and exact boundary conditions the boundary problem has been solved completely and rigorously within the framework of the classical (non-quantum) electrodynamics of continuous mediums and the modified (simplified) nonlocal Pippard electrodynamics of spatially homogenous type-I superconductors.

The principal object of this work is a self-consistent and exact setting of the boundary value problem and also its mathematically rigorous solution taking into account surface effects and nonlocality of Pippard type-I superconductors.

The solution novelty is a description of the surface effects within the framework the modified (simplified) nonlocal Pippard electrodynamics.

It is shown that disregarding for the surface effects in a theory of low-temperature superconductors can lead not only to computational mistakes, but also to incorrect qualitative conclusions.

The conclusions about nature of a macroscopic spherical type-I superconductor to the intermediate and normal state have been drawn on the ground of a rigorous solution of the boundary problem and determination of the total magnetic field distribution in the whole space (inside and outside the superconducting sphere). These conclusions are in agreement with those, which have been drawn earlier by other authors on the ground of different approximate models and methods.

Since the scientific results have been obtained by the authors on the basis of rigorous and self-consistent solution of the exactly set boundary problem, the work is undoubtedly of theoretical and methodical interest.

Downloads

Download data is not yet available.

References

I.M. Dmitrenko. In the world of superconductivity, (Naukova Dumka, Kyiv, 1981), 195 p. И.М. Дмитренко. В мире сверхпроводимости (Наукова думка, Киев), 195 с. [In Russian]

V. Bukkel. Superconductivity. Fundamentals and Applications, (Mir, Moscow, 1975), 370 p. В. Буккель. Сверхпроводимость. Основы и приложения, (Мир, Москва), 370 с. [In Russian]

E. Linton. Superconductivity, 2nd ed., Rev. and add. (Mir, Moscow, 1971), 264 p. Э. Линтон. Сверхпроводимость, 2-е изд., испр. и доп. (Мир, Москва), 264 с. [In Russian]

A. Rose-Ince, E. Roderick. Introduction to the physics of superconductivity, (Mir, Moscow, 1972), 272 p. А. Роуз-Инс, Е. Родерик. Введение в физику сверхпроводимости, (Мир, Москва), 272 с. [In Russian]

V.V. Schmidt. Introduction to the physics of superconductors, 2nd ed., Rev. and add., (MTsNMO, Moscow, 2000), 398 p. В.В. Шмидт. Введение в физику сверхпроводников, 2-е изд., испр. и доп, (МЦНМО, Москва), 398 с. [In Russian]

L.D. Landau, E.M. Lifshits. Theoretical physics. vol. 8. Electrodynamics of Continuous Media, 2nd ed., Rev. and add., (Nauka, Moscow, 1982), 624 p. Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика. т.8. Электродинамика сплошных сред, 2-е изд., перераб. и доп., (Наука, Москва), 624 с. [In Russian]

B. Serin. Superconductivity. Experimental part. Low temperature physics: scientific collection, ed. A.I. Shalnikov, (Izd.inostr.lit., Moscow, 1959), pp. 621–622. Б. Серин. Сверхпроводимость. Экспериментальная часть. Физика низких температур: научный сборник под ред. А.И.Шальникова, (Изд.иностр.лит., Москва), С. 621–622. [In Russian]

P. De Gennes. Superconductivity of metals and alloys, (Mir, Moscow, 1968), 280 p. П. Де Жен. Сверхпроводимость металлов и сплавов, (Мир, Москва, 1968), 280 с. [In Russian]

M. Tinkham. Introduction to superconductivity, (Atomizdat, Moscow, 1980), 312 p. М. Тинкхам. Введение в сверхпроводимость, (Атомиздат, Москва, 1980), 312 с. [In Russian]

E.A. Pashitsky. Fundamentals of the theory of superconductivity, (Vischa shkola, Kyiv, 1985), 104 p. Э.А. Пашицкий. Основы теории сверхпроводимости, (Вища школа, Киев), 104 с. [In Russian]

J. Bardeen. Superconductivity theory. Low temperature physics: scientific collection, ed. A.I. Shalnikov, (Izd.inostr.lit., Moscow, 1959), pp. 679–782. Дж. Бардин. Теория сверхпроводимости. Физика низких температур: научный сборник под ред. А.И.Шальникова, (Изд. иностр. лит., Москва), С. 679–782. [In Russian]

V.V. Batygin, I.N. Toptygin. Collection of problems in electrodynamics, 2nd ed., Revised, textbook, (Nauka, Moscow, 1970), 504 p. В.В. Батыгин, И.Н. Топтыгин. Сборник задач по электродинамике, 2-е изд., перераб., учебное пособие, (Наука, Москва), 504 с. [In Russian]

I. N. Toptygin. Modern electrodynamics. Part 2. Theory of electromagnetic phenomena in matter, (NITS "Regulyarnaya i khaoticheskaya dinamika", Moscow-Izhevsk, 2005), 848 p. И.Н. Топтыгин. Современная электродинамика. Часть 2. Теория электромагнитных явлений в веществе, (НИЦ "Регулярная и хаотическая динамика", Москва-Ижевск), 848 с. [In Russian]

A.V. Svidzinsky, O.M. Viligursky, Lectures on superconductivity physics, (RVV "Vezha" Volynsʹkoho derzhavnoho universytetu im. Lesi Ukrayinky, Lutsʹk, 2003), 82 s. А.В. Свідзинський, О.М. Вілігурський. Лекції з фізики надпровідності, (РВВ "Вежа" Волинського державного університету ім. Лесі Українки, Луцьк), 82 с. [In Ukrainian]

E.M. Lifshitz, L.P. Питаевский. Theoretical physics. v.9. Statistical physics. Part 2. Theory of the condensed state, (Nauka, Moscow, 1978), 448 p. Е.М. Лифшиц, Л.П. Питаевский. Теоретическая физика. т.9. Статистическая физика. Часть 2. Теория конденсированного состояния, (Наука, Москва), 448 с. [In Russian]

D.I. Blokhintsev. Fundamentals of Quantum Mechanics. 6th ed., Stereot., (Nauka, Moscow, 1983), 664 p. Д.И. Блохинцев. Основы квантовой механики. 6-е изд., стереот., (Наука, Москва), 664 с. [In Russian]

І.О. Vakarchuk. Quantum mechanics. 3rd edition, ext., (vyd-vo LNU im. Ivana Franka, Lviv, 2007), 848 p. І.О. Вакарчук. Квантова механіка. 3-тє вид, доп., (вид-во ЛНУ ім. Івана Франка, Львів), 848 с. [In Ukrainian]

D.S. Kuznetsov. Special functions, 2nd ed., Rew. and ext., (Vysshaya shkola, Moscow, 1965), 273 p. Д.С. Кузнецов. Специальные функции, 2-е изд., перераб. и доп., (Высшая школа, Москва, 1965), 273 с. [In Russian]

A.R. Yanpolsky. Hyperbolic functions, (Fizmatgiz, Moscow, 1960), 196 p. А.Р. Янпольский. Гиперболические функции, (Физматгиз, Москва, 1960), 196 с. . [In Russian]

G. Arfken. Mathematical Methods in Physics, (Atomizdat, Moscow, 1970), 712 p. Г. Арфкен. Математические методы в физике, (Атомиздат, Москва, 1970), 712 с. . [In Russian]

M.M. Bredov, V.V. Rumyantsev, I.N. Toptygin. Classical electrodynamics, (Nauka, Moscow, 1985), 400 p. М.М. Бредов, В.В. Румянцев, И.Н. Топтыгин. Классическая электродинамика, (Наука, Москва, 1985), 400 с. . [In Russian]

A.I. Alekseev. Collection of problems on classical electrodynamics, (Nauka, Moscow, 1977), 320 p.А.И. Алексеев. Сборник задач по классической электродинамике, (Наука, Москва, 1977), 320 с. . [In Russian]

Published
2020-12-30
How to Cite
Ort, O. G., & Vovk, N. R. (2020). The classical boundary problem of the transition of a spherical type-I superconductor to the normal state with increasing of the applied uniform magnetic field (methodical development). Journal of V. N. Karazin Kharkiv National University. Series Physics, (33), 82-103. https://doi.org/10.26565/2222-5617-2020-33-06