Topological methods in measurement and research of nonlinear dynamical systems

  • Yurii Kurskoy Kharkov National University of Radioelectronics, Nauki Av., 14, Kharkov, 61166, Ukraine https://orcid.org/0000-0002-1333-2931
  • Yurii Machekhin Kharkov National University of Radioelectronics, Nauki Av., 14, Kharkov, 61166, Ukraine
  • A. S. Gnatenko Kharkov National University of Radioelectronics, Nauki Av., 14, Kharkov, 61166, Ukraine
Keywords: nonlinear dynamical system, topology, chaos, Shannon entropy, fractal dimension

Abstract

The authors substantiate the need to create a special theory of measurement and analysis of measurement results for nonlinear dynamical systems. The theory should be based on the principles of the open systems theory, dynamic chaos theory and synergetics theory. The authors analyzed the main topological methods and tools for studying of nonlinear dynamic systems. The main characteristics of nonlinear dynamical systems (interval values of dynamic variables, strong dependence on initial conditions and noise, complex, often chaotic dynamics, evolution) were systematized. It was proposed the next topological tools for analysis of measurement results in nonlinear dynamical systems: measurement portrait, Shennon entropy, fractal dimension, forecasting time.

Downloads

Download data is not yet available.

References

A.N. Kolmogorov. DAN USSR, 98, 527 (1954).

E. Lorenz. Bulletin of the American Meteorological Society. 50, 345, (1969).

S.Smale, Bulletim of the Amer. Math. Soc. 66, 1 (1960).

I. Prigogine, Time, Structure and Fluctuations, Nobel Lecture. (1977).

H. Haken. The science of structure :synergetics:New York: Van Nostrand Reinhold, (1984), 255 p.

V.L. Ginzburg, UFN, 169, 4. 419 (1999).

Yu.P. Machekhin, V.A. Single, UMJ, 2, 49 (1996).

A.S. Gnatenko, Yu.P. Machekhin, Yu.S. Kurskoy, V.P. Obozna, J. Nano- Electron. Phys. 10 (2), 02033 (2018).

Yu.P. Machekhin, Yu.S. Kurskoy, A.S. Gnatenko, Radiotekhnica, 192, 2, 102 (2018).

Yu.P. Machekhin, Yu.S. Kurskoy, Fundamentals of Nonlinear Metrology: LAP (2014), 240 с.

Yu. Machekhin, Yu. Kurskoy, M&T. 60, 3, 49 (2017).

Yu. Neimark. Dynamic Systems and Controlled Processes, Editorial URSS, M. (2010). 336 с.

V.Yu. Loskutov. UFN, 177, 989 (2007).

P.V. Novitsky, I.A. Zograf, Error estimation of measurement results, Energoatomizdat, Leningrad, (1991), 304 p.

Yu.P. Machekhin, Yu.S. Kurskoy, Instruments and Methods of Measurement. 6, 2. 257 (2015).

G.G. Akchurin, A.G. Akchurin, Letters in JTP, 31, 10,76 (2005).

A.A. Khadartsev, V.M. Eskov, Therapist, 1. 35 (2015).

A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Meier, Qualitative theory of second-order dynamical systems, Nauka, М. (1966), 568 с.

N.G. Van Campen. Stochastic processes in physics and chemistry. Vischaya shkola, М. (1990), 376 p.

Yu. Machekhin, Yu. Kurskoy, E. Prisich, M&T, 61, 5, 48 (2016).

Yu.L. Klimontovich, Letters in JTP, 8, 1412 (1983).

Yu. Machekhin, Yu. Kurskoy, Measuring technique, 57. 6. 609 (2014).

Yu. Machekhin, Yu. Kurskoy, M&T, 50, 6, 56 (2014).

Yu. Machekhin Yu. Kurskoy, M&T, 56, 06, 50 (2015).

M. Schroeder, Fractals, chaos, power laws, Regular and chaotic dynamics, Izhevsk, (2001), 316 p.

B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, (1982), 491 р.

Yu. Machekhin, Measurement Techniques. 52. 8. 835 (2009).

M. Born, Continuity, determinism, reality, Nauka, М. (1971), 415 p.

Yu.A. Kravtsov, UFN, 158, 1, 93 (1989).

J. Lighthill, Proc. Roy. Soc. Ser. A. 407. 35 (1986).

Published
2019-09-10
How to Cite
Kurskoy, Y., Machekhin, Y., & Gnatenko, A. S. (2019). Topological methods in measurement and research of nonlinear dynamical systems. Journal of V. N. Karazin Kharkiv National University. Series Physics, (29), 22-28. https://doi.org/10.26565/2222-5617-2018-29-04