Toward a theory of the impurity states of electrons in two-dimensional electron gas

  • Georgiy I Rashba V.N. Karazin Kharkiv National University, 4 Freedom Square, Kharkiv, 61022, Ukraine
Keywords: method of local perturbations, two-dimensional electron gas, magnetoimpurity states, Green function

Abstract

The two-dimensional electron conductors containing impurity atoms capable of localiz-ing electrons in a magnetic field are considered with the use of quantum Green function methods for investigating electron magnetoimpurity states. These states are taken into account by the Lifshits method of local perturbations. The theory is illustrated for the case of a two-dimensional electron gas with impurity atoms in a quantizing magnetic fi eld. The characteristics of magnetoimpurity states are calculated for Gaussian separable impurity potential.

Downloads

Download data is not yet available.

References

Madelung O 1973 Festkorpertheorie III. Lokalisierte zustande (Berlin - Heidelberg - New-York: SpringerVerlag).

F. Bassani, P. Pastori, G. Parravicini. Electronic states and optical transitions in solids, Pergamon Press, Oxford-New-York - Toronto (1975), 300 p.

M. Lannoo, J. Bourgoin. Point defects in semiconductors, Springer-Verlag, Berlin - Heidelberg - New-York (1981), v. I, 244 p.

M. Lannoo, J. Bourgoin. Point defects in semiconductors, Springer-Verlag, Berlin - Heidelberg - New-York (1983), v. II, 258 p.

L.D. Landau, E.M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, Oxford - New-York - Toronto (1989), 760 p.

A.M. Ermolaev, M.I. Kaganov. JETP Lett. 6, 395 (1967).

A.M. Ermolaev. Sov. Phys. JETP, 27, 673 (1968).

A.M. Ermolaev. Fiz. Tverd. Tela, 22, 932 (1980).

A.M. Ermolaev. Fiz. Tverd. Tela, 23, 343 (1981).

E.A. Kaner, A.M. Ermolaev. JETP Lett., 44, 306 (1986).

E.A. Kaner, A.M. Ermolaev. Sov. Phys. JETP, 65, 1266 (1987).

N.V. Gleizer, A.M. Ermolaev, G.I. Rashba. Low Temp. Phys., 20, 919 (1994).

A.M. Ermolaev, G.I. Rashba. Low Temp. Phys., 29, 945 (2003).

A.M. Ermolaev, G.I. Rashba. Low Temp. Phys., 32, 245 (2006).

A.M. Ermolaev, N.V. Ulyanov. Spin waves in nonferromagnetic conductors with impurity electron states, KhNU im. V.N. Karazina, Kharkov (2006), 140 p.

V.S. Babichenko, A.N. Kozlov. Solid State Commun., 59, 39 (1986).

A. Kamenev, A. Andreev. Phys. Rev., B 60, 2218 (1999).

E. Brezin. In Applications of Field Theory to Statistical Mechanics, ed. by edited by L. Garrido, Germany, Springer-Verlag, Berlin (1985), p. 56.

I.S. Burmistrov. Zh. Eksp. Teor. Fiz., 122, 150 (2002).

M.V. Feigelman, A.I. Larkin, M.A. Skvortsov. Phys. Rev., B 61, 12361 (2000).

A.M. Kosevich, L.V. Tanatarov. Fiz. Tverd. Tela 6, 3423 (1964).

Y. Avishai, M.Ya. Azbel, S.A. Gredeskul. Phys. Rev., B48, 17280 (1993).

S.A. Gredeskul, M. Zusman, Y. Avishai, M.Ya. Azbel. Phys. Rep., 288, 223 (1997).

I.M. Lifshitz, S.A. Gredeskul, L.A. Pastur. Introduction to the Theory of Disordered Systems, Wiley, New- York (1988), 360 p.

A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshinskii. Quantum Field Theoretic Methods in Statistical Physics, Pergamon Press, Oxford - New-York - Toronto (1965), 365 p.

A.M. Ermolaev, G.I. Rashba. Lectures on quantum statistics and kinetics, V.N. Karazin Kharkiv National University, Kharkiv (2012), 520 p.

J.R. Taylor. Scattering Theory, J. Wiley and Sons, INC, New York (1972), 564 p.

I.S. Gradshteyn, I.M. Ryzhik. Table of Integrals, Series and Products, Academic Press, New-York (1980), 1162 p.

Published
2018-01-18
How to Cite
Rashba, G. I. (2018). Toward a theory of the impurity states of electrons in two-dimensional electron gas. Journal of V. N. Karazin Kharkiv National University. Series Physics, (27), 6-10. Retrieved from https://periodicals.karazin.ua/physics/article/view/10938