Coherent emission from a stack of long Josephson junctions based on low-temperature superconductors

  • Alexander Grib Physics Department, Kharkiv V. N. Karazin National University, Svobody sq. 4, 61022, Kharkiv, Ukraine
  • Ruslan Vovk Physics Department, Kharkiv V. N. Karazin National University, Svobody sq. 4, 61022, Kharkiv, Ukraine
  • Volodymyr Shaternik G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, UA-03142 Kyiv, Ukraine
Keywords: Josephson junctions, coherent emission, synchronization, zero-field steps

Abstract

The theory of coherent emission of intrinsic Josephson junctions was applied for calculations of IV-characteristics and ac power of emission of a stack of two inductively coupled long junctions with high density of critical currents (106 A/m2) which were based on low-temperature superconductors (MoRe films). Barriers were made of the mixture of Si and W. Barriers had thickness of about 15 nm. Randomly distributed clusters of tungsten in the thick silicon barrier provided weak links between superconducting MoRe films. The critical temperature of the MoRe superconducting films was 9 K. Calculations were made for the system at the temperature 7.7 K. Random spread of critical currents along the junction leaded to the formation of the zero-field step in the IV-curve. The same zero-field step appeared when edges of the homogeneous junction were loaded by the resistance, the capacitance and the inductance. In the stack of two junctions, strong coherent emission appeared at the zero-field step which corresponded to the in-phase mode of oscillations of voltages.

Downloads

Download data is not yet available.

References

L. Ozyuzer, A. E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K. E. Gray, W.-K. Kwok, U. Welp. Science, 318, 1291 (2007).

K. Kadowaki, H. Yamaguchi, K. Kawamata, T. Yamamoto, H. Minami, I. Kakeya, U. Welp, L. Ozyuzer, A. Koshelev , C. Kurter, K.E. Gray, W.-K. Kwok. Physica, 468C, 634 (2008).

B. Gross, S. Guénon, J. Yuan, M. Y. Li, J. Li, A. Ishii, R. G. Mints, T. Hatano, P. H. Wu, D. Koelle, H. B. Wang, and R. Kleiner. Phys. Rev. B 86, 094524 (2012).

H. Asai and S. Kawabata, Appl. Phys. Lett. 104 112601 2014).

A. E. Koshelev, L. N. Bulaevskii. Phys. Rev. B77, 014530 (2008).

Alexander Grib, Paul Seidel and Masayoshi Tonouchi. Supercond. Sci. Technol. 30, 014004 (2017).

S. Sakai and P. Bodin, N. F. Pedersen. J. Appl. Phys., 73, 2411 (1993).

R. Kleiner, P. Müller, H. Kohlstedt. N. F. Pedersen, S. Sakai. Phys. Rev. B50, 3942 (1994).

Antonio Barone and Gianfranco Paternò. Physics and applications of the Josephson effect, A Wiley-Interscience Publication, New York (1982), 529 p.

V. E. Shaternik, A. P. Shapovalov, A. Yu. Suvorov, Low Temp. Phys (Fiz. Nizk. Temp.) 43, №7, 1094 (2017).

L. G. Aslamazov and A. I. Larkin, JETP Lett. 9, 87 (1969).

Alexander Grib. Visnyk Kharkivs’kogo Natsional’nogo Universitetu imeni V. N. Karazina, № 1135, ser. “Fizika”, 21, 61 (2014).

Alexander Grib. Visnyk Kharkivs’kogo Natsional’nogo Universitetu imeni V. N. Karazina, № 1158, ser. “Fizika”, 22, 51 (2015).

Alexander Grib and Paul Seidel. IEEE Trans. Appl. Supercond. 26, №3, 1801004 (2016).

Alexander Grib and Paul Seidel. IEEE Trans. Appl. Supercond. 27, №4, 1800604 (2017).

K. K. Likharev. Dynamics of Josephson junctions and circuits, Gordon and Breach, Philadelphia. (1991),
750 p.

T. A. Fulton and R. C. Dynes. Solid State Commun., 12, 57 (1973).
Published
2018-01-15
How to Cite
Grib, A., Vovk, R., & Shaternik, V. (2018). Coherent emission from a stack of long Josephson junctions based on low-temperature superconductors. Journal of V.N. Karazin Kharkiv National University, Series "Physics", (26), 28-32. Retrieved from https://periodicals.karazin.ua/physics/article/view/10079