Mechanisms of influence of low-intensity optical radiation on microcirculation system (review)

  • Н. Н. Кизилова
  • А. М. Коробов
Keywords: Blood microcirculation system, low-intensity optical radiation, the effects and mechanisms of action, mathematical models.

Abstract

The paper provides an overview of the effects and mechanisms of action of low-intensity optical radiation of lasers and LEDs at the molecular, cellular, tissue and body levels.

It is known that all the processes in living bodies at all levels of their organization are linked to the transfer and transformation of energy. Moreover, in the majority of these processes light is a primary energy source. Effects of optical radiation on plants and animals are diverse and are associated with the respective specific photosensitive molecules, and change of their conformation and physiological activity, which causes a change in the metabolism at the cellular level. The light effect is also associated with metabolic signaling networks, which cause the reaction at the level of tissues and whole body.

Currently, optical radiation is widely used in traditional medicine as a part of therapeutic and rehabilitation group of measures, in physical therapy and veterinary medicine, particularly in treatment of infectious diseases, disorders of skin, sinews, ligaments, joints, bed sores, respiratory disorders, after wound processes, growth and development disorders, in hyperbilirubinemia treatment. In recent years, great attention has been paid to the therapeutic use of non-destructive and non-toxic LIOR of lasers (low level energy lasers, LLEL) and LEDs (light-emitting diodes).

Low-intensity optical radiation (LIOR) accelerates wound healing, shows anti-inflammatory and analgesic effect (may also be applied as postoperative analgesic), protects cells and prevents their destruction, caused by cytotoxic factors. Intensification of microcirculation under the influence of optical radiation may be a key mechanism of wound healing and pain reduction. Number of references show the cytoprotective action of LIOR of different wavelengths and doses on cells in culture, including cells treated with poisons: cyanide, tetrodotoxin, rotenone and MPP +. The cytoprotective effect of LIOR and apoptosis reduction were observed in amyloid-beta treated neurons.

Recently, there has been a growing interest in the therapeutic use of nondestructive non-invasive methods, such as LED light, which practically have no negative aftereffects and contraindications. In this case, the action mechanisms of photons is associated with cellular and subcellular receptors, whose photoinduced increased or decreased activity results in a pathway at the cellular and tissue level, and then in the whole body.

The determined LIOR mechanisms of action at tissue level are the following:

1)  Photochemical – the energy of the optical radiation is absorbed by the light-sensitive molecules, and then transferred to other molecules and molecular structures that are involved in signaling and metabolic processes regulation at the molecular level. The greatest effect for each light-sensitive molecule is caused by exposure to the wavelength range corresponding to the maximum of its absorption.

2)  Photothermal – light-induced hyperthermia, thermic dynamic reactions, and at higher intensities – light-induced evaporation (photovaporisation), selective photothermolysis, light-induced coagulation and tissue fusion.

3)  Photomechanical – chemical and thermal photoablation, photofragmentation and photodisruption.

4)  The photophysical – pyroelectric effect (pyroelectricity).

Selection of the optimal spectral range, the optimal dose and exposure mode is one of the most important issues of low-intensity phototherapy. Currently, the objective information on the mechanisms, patterns and results of impact of LIOR on tissues and cells is not enough to develop and implement specific (strictly regulated) clinical procedures, so phototherapy is conducted in addition to standard therapeutic and rehabilitation activities.

The article also details the propagation of optical radiation in biological tissues as multilayer anisotropic materials in terms of mathematical models.

Downloads

Download data is not yet available.

References

Алексеева Н.Т., Никитюк Д.Б., Глухов А.А. Морфологическая оценка отдаленных результатов регенерации кожи в экспериментальных ранах после светотерапии // Вестник новых медицинских технологий. – 2012.

– т.XIX, №2. – C.82–85.

Алексеева Н.Т. Гистопланиметрическая характеристика асептического раневого процесса при различных методах регионального воздействия. // Фундаментальные исследования. – 2014. – №10. – C.817–821.

Астафьева Л.Г., Желтов Г.И., Рубанов А.С. Моделирование процесса нагрева сосудов крови лазерным излучением. // Оптика и спектроскопия. – 2001. – т. 90,

№2. – C. 287–292.

Астафьева Л.Г., Желтов Г.И. Динамика температурного поля внутри кровеносного сосуда под действием лазерного излучения. // Оптика и спектроскопия. – 2005.

– т. 98, №4. – С. 689–694.

Березовский В.А., Колотилов Н.Н. Биофизические характеристики тканей человека: Справочник. Киев: Наукова думка, 1990. – 224 с.

Борн М., Вольф Э. Основы оптики. – М.: Наука, 1970. — 856 с.

Глухов А.А., Алексеева Н.Т., Остроушко А.П. Морфологическая оценка эффективности применения светотерапии в лечении ран мягких тканей // Междунар. Журн. Прикл. и Фундам. Иссл. – 2012. – №2. – P.72–73.

Джонсон П. Периферическое кровообращение.- М.: Медицина. – 1982. – 440с.

Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах. Т. 1. Однократное рассеяние и теория переноса. – М.: Мир, 1981. – 281 с.

Казначеев В.П., Дзизинский А.А. Клиническая патология транскапиллярного обмена. М. – 1975. – 240 с.

Казначеев C.B., Молчанова Л.В. Изменение биохимических параметров животного под воздействием видимого света. //Сб. Психическая саморегуляция. – Новосиб., 1983. – Вып.З, – С.301–311.

Карандашов В.И., Петухов Е.Б. Ультрафиолетовое облучение крови. М.: Медицина. – 1997. – 199 с.

Карандашов В.И., Петухов Е.Б., Зродников В.С. Фототерапия. М.: Медицина. – 2001. – 159 с.

Кизилова Н.Н. Влияние низкоинтенствного оптического излучения на систему микроциркуляции // Материалы XXХХI Международной научно-практической конференции «Применение лазеров в медицине и биологии» Харьков. - 2014. – С. 143-145.

Коробов А.М., Коробов В.А., Лесная Т.А. Фототерапевтические аппараты Коробова серии «Барва». Харьков: ИПП «Контраст». – 2010. – 176 с.

Куприянов В.В., Караганов Я.Л., Козлов В.И. Микроциркуляторное русло. М. – 1975. – 216 с.

Магомедов А.Р., Стадников А.А., Нузова О.Б., Прудников А.В. Новый способ лечения гнойных ран. // Бюлл. Восточно-Сиб. Науч. Центра СО РАМН. – 2012. –

№4(86), часть 1. – С.205–209.

Молчанова Л.В., Верчанский Г.Л. Метод выявления патологических особенностей светопроводящих структур биологических объектов. /Удостоверение на рац.предложение No 1217, 1986.

Набиуллин Е.Р. Дифференцированная светотерапия в комплексном лечении больных с ранами мягких тканей // Наукоемкие технологии и материалы. Сб. трудов региональной научно-практической конференции студентов, аспирантов и молодых ученых. Воронеж. – 2010. – С. 112–114.

Плетникова В.М., Третьяков Е.В., Шувалов В.В. Устойчивость фазовой функции Хени-Гринштейна и быстрое интегрирование по путям в условиях многократного отражения света. // Квантовая электроника. – 2006.– т.36, №11. – С.1039–1042.

Применение лазеров в медицине и биологии. Материалы XXХХI Международной научно-практической конференции. Харьков. – 2014. – 165c.

Пушкарева А.Е. Методы математического моделирования в оптике биоткани. Учеб.пос. СПб: СПбГУ ИТМО. – 2008. – 103 с.

Самусев Р. П., Липченко В. Я. Атлас анатомии человека. М. – 2002. – 704 с.

Селезов И.Т., Кизилова Н.Н. Электромагнитобиология: современное состояние и перспективы. // «Фізичні процеси та поля технічних і біологічних об’єктів». Матеріали конференції. Кременчук. – 2011. – С.64–65.

Селезов И.Т., Кизилова Н.Н. Дальний транспорт жидкости и волновые процессы в проводящих путях растений // Современные проблемы математики, механики и информатики. – Харьков: Изд–во «Апостроф». – 2011. – C.201–217.

Сетейкин А.Ю. Модель расчета температурных полей, возникающих при воздействии лазерного излучения на многослойную биоткань // Оптический журнал. – 2005. – т. 72, № 7. – С. 42–47.

Симоненко Г.В., Тучин В.В. Оптические свойства биологических тканей. Учебно – методическое пособие. Изд. Саратовского ун-та. – 2007. – 48с.

Сиротин Б.З., Жмеренецкий К.В. Микроциркуляция при сердечно-сосудистых заболеваниях.– Хабаровск: Изд-во ДВГМУ, 2008.– 150 с.

Трошин А.С., Трошина В.П. Физиология клетки. М.: Просвещение. – 1979. – 119с.

Тучин В.В. Лазеры и волоконная оптика в биомедицинских исследованиях.– Саратов: Изд-во Сарат. Ун-та. – 1998. – 384 с.

Юрина Н.П., Мокерова Д.В., Одинцова М.С. Светоиндуцируемые стрессовые белки пластид фототрофов. // Физиол. растений. – 2013. – т.60,N5. – С.611–624.

Чернух А.М., Александров П.Н., Алексеев О.В. Микроциркуляция. М. – 1975. – 456 с.

Abergel R.P., Lyons R.F., Castel J.C., et al. Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. // J. Dermatol. Surg. Oncol. – 1987. – v.13. – P.127–133.

Agha-Hosseini F., Moslemi E., Mirzaii-Dizgah I. Comparative evaluation of low-level laser and CO2 laser in treatment of patients with oral lichen planus. // Int. J. Oral Maxillofac Surg. – 2012. – v.41. – P.1265–1269.

Alexandrakis G., Rannou F.R., Chatziioannou A.F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. // Phys. Med. Biol. – 2005. – v.50. – P. 4225–4241.

Alisoy H.Z., Barlaz Us S., Alagoz B.B. An FDTD based numerical analysis of microwave propagation properties in a skin–fat tissue layers. // Optik. – 2013. – v.124. – P.5218– 5224.

Almeida-Lopes L., Rigau J., Zangaro R.A., et al. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. // Lasers Surg. Med. – 2001. – v.29.– P.179–184.

Anderson R.R., Parrish J.A. Optical properties of human skin. // The Science of Photomedicine. /eds J.D. Regan, J.A.Parrish. New York: Plenum Press. – 1982. – P. 147–194.

Ansari M.A., Massudi R. Study of light propagation in Asian and Caucasian skins by means of the Boundary Ele- ment Method. // Optics and Lasers in Engineering. – 2009.– v.47. – P.965–970.

Arimoto H., Egawa M. Imaging wavelength and light penetration depth for water content distribution measurement of skin. // Skin Research and Technology. – 2015.– v.21. – P. 94–100.

Bae G., Choi G. Decoding of light signals by plant phytochromes and their interacting proteins // Annu. Rev. Plant Biol. – 2008. –v. 59. – P. 281–311.

Baroni B.M., Leal Junior E.C., De Marchi T., et al. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. // Eur. J. Appl. Physiol.

– 2010. – v.10. – P. 789–796.

Barton J.K., Hammer D.X., Prefer T.J., et al. Simultaneous irradiation and imaging of blood vessels during pulsed laser delivery. // Lasers in Surg. Med. – 1999. – v. 24. – P. 236–243.

Basford J.R. Low intensity laser therapy: still not an established clinical tool. // Lasers Surg. Med. – 1995. – v.16. – P.331–342.

Bashkatov A.N., Genina E.A., Tuchin V.V. Optical properties of skin, subcutaneous, and muscle tissues: a review. // J. Innovative Opt. Health Sci. – 2011. – v.4. – P. 9–38.

Beauvoit B., Kitai T., Chance B. Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors. // Biophys. J. – 1994. – v.67. – P. 2501–2510.

Bibikova A., Oron U. Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. // Anat. Rec. – 1993. – v.235.– P. 374–380.

Bouma M.G., Buurman W.A., van den Wildenberg

F.A. Low energy laser irradiation fails to modulate the inflammatory function of human monocytes and endothelial cells. // Lasers Surg. Med. – 1996. – v. 19. – P.207–215.

Branemark P.I., Adell R., Breine U., et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies. // Scand. J. Plast. Reconstr. Surg. – 1969. – v.3. – P.81–100.

Calles C., Schneider M., Macaluso F., et al., Infrared A. Radiationinfluences the skin fibroblast transcriptome: mechanisms andconsequences. // J. Invest. Dermatol. – 2010. – v.130. – P.1524—1536.

Campanha B.P., Gallina C., Geremia T., et al. Low- level laser therapy for implants without initial stability. // Photomed. Laser. Surg. – 2010. –v.28. – P.365–369.

Conlan M.J., Rapley J.W., Cobb C.M. Biostimulation of wound healing by low-energy laser irradiation. A review. // J. Clin. Periodontol. – 1996. – v.23. – P.492–496.

Cressoni M.D., Dib Giusti H.H., Casarotto R.A., Anaruma C.A. The effects of a 785-nm AlGaInP laser on the regeneration of rat anterior tibialis muscle after surgically induced injury. // Photomed. Laser Surg. – 2008. – v. 26,N5. – P.461–466.

Daly S.M., M.J. ‘Go with the flow’: A review of methods and advancements in blood flow imaging. // J. Bio- photonics. – 2013. – v. 6, N3. – P. 217–255.

Dolotov L.E., Sinichkin Yu.P., Tuchin V.V., et al. De- sign and Evaluation of a Novel Portable Erythema-Melanin- Meter // Lasers in Surg. Med. – 2004. – v. 34. – P. 127–135.

Dortbudak O, Haas R, Mailath-Pokorny G. Effect of low-power laser irradiation on bony implant sites. // Clin. Oral. Implants Res. – 2002. – v.13. – P.288–292.

Douven L.F.A., Lucassen G.W. Retrieval of optical oroperties of skin from measurement and modelling the diffuse reflectance // Proc. SPIE. – 2000. – v. 3914. – P. 312–323.

Eellsa J.T. , Wong-Riley M.T.T., VerHoeve J., et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. // Mitochondrion. – 2004. – v. 4. – P. 559–567.

Freddo A.L., Rodrigo S.M., Massotti F.P., et al. Effect of low-level laser therapy after implantation of poly-L- lactic/polyglycolic acid in the femurs of rats. // Lasers Med. Sci. – 2009. – v.24. – P.721–728.

Gallas J.M., Eisner M. Fluorescence of Melanin Dependence upon Excitation Wavelength and Concentration. // Photochem. Photobiol. – 1987. – v. 45, N5. – P. 595–600.

Gemert M.J.C. van, Welch A.J., Alpesh P.A. Is There an Optimal Laser Treatment for Port Wine Stains? // Lasers in Surg. Med. – 1986. – v. 6, N1. – P. 76–83.

Gemert M.J.C. van, Jacques S., Sterenborg H., Star W. Skin optics. // IEEE Trans. BМE. – 1989. – v.36, – P.1146–1154.

Gemert M.J.C. van, Welch A.J., Pickering J.W., Tan O.T., Gijsbers G.H.M. Wavelengths for Laser Treatment of Port Wine Stains and Telangiectasia. // Lasers in Surg. Med. – 1995. – v. 16, N2. – P. 147–155.

Gemert M.J.C. van, Smithies D.J., Verkruysse W., Milner T.E., Nelson J.S. Wavelengths for Port Wine Stain Laser Treatment: Influence of Vessel Radius and Skin Anatomy. // Phys. Med. Biol. – 1997. – v. 42, N1. – P. 41–50.

Georgakoudi I., Jacobson B.C., Müller M.G., et al. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. // Cancer Res. – 2002. – v.62,N3. – P. 682–687.

Geronemus R., Weiss R.A., Weiss M.A., et al. Nonablative LED photomodulation—light activated fibroblast stimulation clinical trial. // Lasers Surg. Med. – 2003. – v.32, Suppl. 15. – P.22.

Grossman N., Schneid N., Reuveni H., et al. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. // Lasers Surg. Med. – 1998. – v.22. – P.212–218.

Haas A.F., Isseroff R.R., Wheeland R.G., et al. Low energy helium neon laser irradiation increases the motility of cultured human keratinocytes. // J. Invest. Dermatol. – 1990. – v.94. – P.822–826.

Harari-Steinberg O., Ohad I., Chamovitz D.A. Dissection of the light signal transduction pathways regulating the two early light-induced protein genes in Arabidopsis. // Plant Physiol. – 2001. – v. 127. – P. 986–997.

http://healingtools.tripod.com/PT.html

http://zepter-ul.ru/info/veterinarybioptron.html

Ito S., Song Y.H., Imaizumi T. LOV domain-containing F-box

proteins: light-dependent protein degradation modules in Arabidopsis // Mol. Plant. – 2012. – v.5. – P. 573–582.

Jakse N., Payer M., Tangl S., et al. Influence of low-level laser treatment on bone regeneration and osseoin- tegration of dental implants following sinus augmentation. An experimental study on sheep. // Clin. Oral. Implants Res. – 2007. – v.18. – P.517–524.

Jacques S.L. Optical properties of biological tissues: a review. // Phys. Med. Biol. – 2013. – v.58. – R37– R61.

Jong de W.C., Korfage J.A., Langenbach G.E. Variations in habitual bone strains in vivo: long bone versus mandible. // J. Struct. Biol. – 2010. – v.172. – P.311–318.

Karu T. Photobiology of low-power laser effects. // Health Phys. – 1989. – v.56. – P.691–704.

Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. // J. Photochem. Photobiol. B. – 1999. – v.49. – P.1–17.

Karu T. Low Power Laser Therapy, Biomedical Photonics Handbook. CRC Press, LLC. – 2003. Chapter 48.

Karu T.I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. // Photochem. Photobiol. – 2008. – v.84. – P.1091–1099.

Kim A.D. Transport theory for light propagation in biological tissue. // J. Opt. Soc. Am. A. – 2004. – v.21. – P.820–827.

Kizilova N., Samit R., Petrov N., Szekeres A. Bio-Thermo-Hydro-Mechanics: problems and perspectives // Congress on Thermal Stresses. Book of Abstracts. Budapest. – 2011.

Lahaye C.T.W., van Gemert M.J.C. Optimal Laser Parameters for Port Wine Stain Therapy: a Theoretical Approach // Phys. Med. Biol. – 1985. – v. 30, N6. – P. 573–588.

Leal Junior E.C., Lopes-Martins R.A., Dalan F., et al, Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. // Photomed. Laser Surg. – 2008. – v.26. – P. 419–424.

Lee S.Y., Park K.-H., Choi J.-W., et al A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: Clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. // J. Photochem. Photobiol. B. – 2007.

– v.88. – P. 51–67.

Lee J., Smith N. Theoretical modeling in hemodynamics of microcirculation. // Microcirculation. – 2008. – v.15. – P. 699–714.

Liang H.L., Whelan H.T., Eells J.T., et al. Photobiomodulation partially rescues visual cortical neurons from cyanide-inducedapoptosis. // Neuroscience. – 2006. – v.139. – P.639–649.

Liu X.G., Zhou Y.J., Liu T.C., Yuan J.Q. Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. // Photomed. Laser Surg. – 2009. – v.27. – P. 863–869.

Lopes C.B., Pinheiro A.L., Sathaiah S.,et al. Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. // Photomed. Laser Surg. – 2005. – v.23. – P.27–31.

Lopes C.B., Pinheiro A.L., Sathaiah S., et al. Infrared laser photobiomodulation (lambda 830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. // Photomed. Laser Surg. – 2007. – v.25. – P.96–101.

Lucassen G.W., Verkruysse W., Keijzer M., van Gemert M.J.C. Light Distributions in a Port Wine Stain Model Containing Multiple Cylindrical and Curved Blood Vessels // Lasers in Surg. Med. – 1996. – v. 18, N 4. – P. 345–357.

Maluf A.P., Maluf R.P., Brito C.R., et al. Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbones. // Lasers Med. Sci. – 2010. – v.25. – P.693–698.

Marchi de T., Leal Junior E.C., Bortoli C., et al. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. // Lasers Med. Sci. – 2012. – v.27. – P. 231–236.

McDaniel D.H., Newman J., Geronemus R., et al. Non-ablative nonthermal LED photomodulation—a multicenter clinical photoaging trial. // Lasers Surg. Med. – 2003.– v.32, Suppl 15. – P.37.

Medrado A.R., Pugliese L.S., Reis S.R., Andrade

Z.A. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. // Lasers Surg. Med. – 2003. – v.32. – P.39–44.

Menter J.M. Temperature dependence of collagen

fluorescence. // Photochem. Photobiol. Sci. – 2006. – v.5, N4.

– P. 403–410.

Mester E., Spiry T., Szende B., Tota J.G. Effect of laser rays on wound healing. // Am. J. Surg. – 1971. – v.122. – P.32–35.

Mester E., Korenyi-Both A., Spiry T., Tisza S. The effect of laser irradiation on the regeneration of muscle fibers (preliminary report). // Exp. Chirurg. – 1975. – v.8. – P.258–262.

Mester E., Mester A.F., Mester A. The biomedical effects of laser application. // Lasers Surg. Med. – 1985. – v.5. – P.31–39.

Mohammed Y., Verhey J.F. A Finite Element Method Model to Simulate Laser Interstitial Thermotherapy in Anatomical Inhomogeneous Regions. // BioMedical Engineering OnLine. – 2005. – v. 4. – P.2.

Mohammed I.F., Al-Mustawfi N., Kaka L.N. Promotion of regenerative processes in injured peripheral nerve induced by low-level laser therapy. // Photomed. Laser Surg. – 2007. – v.25. – P.107–111.

Naegel A., Heisig M., Wittum G. Detailed modeling of skin penetration - An overview. // Advanced Drug Delivery Reviews. – 2013. – v. 65. – P. 191–207.

Nascimento de P.M., Pinheiro A.L., Salgado M.A., Ramalho L.M. A preliminary report on the effect of laser therapy on the healing of cutaneous surgical wounds as a consequence of an inversely proportional relationship between wavelength and intensity: histological study in rats. // Photomed. Laser Surg. – 2004. – v.22. – P.513–518.

Niemz M.H. Laser – Tissue Interactions: Funda- mentals and Applications. Berlin, 1996. – 305 p.

Noble P.B., Shields E.D., Blecher P.D., Bentley

K.C. Locomotory characteristics of fibroblasts within a threedimensional collagen lattice: modulation by a helium/neon soft laser. // Lasers Surg. Med. – 1992. – v. 12. – P. 69–74.

Notman R., Anwar J. Breaching the skin barrier — Insights from molecular simulation of model membranes. // Advanced Drug Delivery Reviews. – 2013. – v.65. – P. 237–250.

Orr L.S., Eberhart R.C. Overview of Bioheat Transfer. // Optical-Thermal Response of Laser-Irradiated Tissue. / Ed. by Welch A.J., van Gemert M.J.C. – N.Y., 1995. – P. 367–384.

Paithankar D.Y., Ross V.E., Saleh B.A., et al. Acne Treatment with a 1450 nm Wavelength Laser and Cryogen Spray Cooling. // Lasers in Surg. Med.. – 2002 – v. 31, N2. – P. 106–114.

Pereira A.N., Eduardo de C.P., Matson E., Marques

M.M. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. // Lasers Surg. Med. – 2002. –v.31. – P.263–267.

Petri A.D., Teixeira L.N., Crippa G.E., et al. Effects of low-level laser therapy on human osteoblastic cells grown on titanium. // Braz. Dent. J. – 2010. – v.21. – P.491– 498.

Philipp C.M., Berlien H.-P. The future of biophotonics in medicine – A proposal. // Medical Laser Application. – 2006. – v. 21. – P.115–122.

Pickering J.W., Butler P.H., Ring B.J., Walker E.P. Computed Temperature Distributions Around Ecstatic Capillaries Exposed to Yellow (578 nm) Laser Light // Phys. Med. Biol. – 1989. – v. 34. – P. 1247–1258.

Pinheiro A.L., Lopes C.B., Sathaiah S., Duarte

J. Laser biomodulation in bone implants: a Raman spectral study. // Int. Congr. Series. – 2003. – v.1248. – P.449–451.

Pinheiro A.L. Advances and perspectives on tissue repair and healing. // Photomed. Laser Surg. – 2010. – v.27. – P.833–836.

Posten W., Wrone D.A., Dover J.S., et al. Low Level Laser Therapy for Wound Healing: Mechanism and Efficacy. // Dermatol. Surg. – 2005. – v.31. – P.334–340.

Prefer T.J., Barton J.K., Smithies D.J., et al. Laser treatment of port wine stains: three-dimensional simulation using biopsy-defined geometry in an optical-thermal model. // Proc. SPIE. – 1998. – v. 3245, N4. – P. 322–333.

Rodrigues N.C., Brunelli R., de Araújo H.S.S., et al. Low-level laser therapy (LLLT) (660 nm) alters gene expression during muscle healing in rats. // J. Photochem. Photobiol. Ser B. – 2013. – v.120. – P.29–35.

Rojas J.C., Gonzalez-Lima F. Neurological and psychologicalapplications of transcranial lasers and LEDs. // Biochem. Pharmacol. – 2013. – v.86. – P.447–457.

Rood P.A., Haas A.F., Graves P.J., et al. Lowenergy helium neon laser irradiation does not alter human keratinocyte differentiation. // J. Invest Dermatol. – 1992. – v.99. – P.445–448.

Russell B.A., Kellett N., Reilly L.R., A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. // J. Cosmet. Laser. Ther. – 2005. – v.7. – P.196–200.

Saidi I.S., Jacques S.L., Tittel F.K. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. // Appl. Opt. – 1995. – v.34. – P. 7410–7418.

Salomatina E, Jiang B, Novak J., Yaroslavsky

A.N. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. // J. Biomed. Opt. – 2006. – v.11. – P.064026.

Scardina G.A., Carini F., Noto F., et al. Microcirculation in the healing of surgical wounds in the oral cavity. // Int. J. Oral Maxillofac. Surg. – 2013. – v.42. – P.31–35.

Schaffer M., Bonel H., Sroka R. Effects of 780 nm diode laser irradiation on blood microcirculation: prelimi- nary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI). // J. Photochem. Photobiol. B. – 2000. – v.54. – P. 55–60.

Scherbakov Y.N., Yakunin A.N., Yaroslavsky I.V., Tuchin V.V. Modeling of Temperature Distribution in the Skin Irradiated by Visible Laser Light // Proc. SPIE. – 1994. – v. 2082, N3. – P. 268–275.

Schindl A., Merwald H., Schindl L., et al. Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation. // Br. J. Dermatol. – 2003. – v.148. – P.334–336.

Schmitt J.M., Kumar G. Optical Scattering Properties of Soft Tissue: A Discrete Particle Model. // Applied Optics. – 1998. – v.37. – P.2788–2797.

Schindl A., Schindl M., Pernerstorfer-Schon H, Schindl L. Low-intensity laser therapy: a review. // J. Invest. Med. – 2000. – v.48. – P.312–326.

Schönenbrücher H., Adhikary R., Mukherjee P., Casey T.A. Fluorescence-Based Method, Exploiting Lipofuscin, for Real-Time Detection of Central Nervous System Tissues on Bovine Carcasses. // J. Agricult. Food Chem. – 2008. – v.56,N15. – P.6220–6226.

Shapiro M.G., Homma K, Villarreal S, et al. Infra- red light excitescells by changing their electrical capacitance. // Nat. Commun. –2012. – v.3. – P.736.

Shvetsky F.M., Musikhin L.V., Smolnikov P.V., et al. Efects of intravenous laser blood irradiation on systemic microcirculation. // Abstracts of 13th European Medical Laser Association Congress. – 2008. – S16.

Silva Junior A.N., Pinheiro A.L., Oliveira M.G.,et al. Computerized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. // J. Clin. Laser. Med. Surg. – 2002. – v.20. – P.83–87.

Simpson C.R., Kohl M., Essenpreis M., Cope M. Near infrared optical properties of ex-vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique Phys. // Med. Biol. – 1998. – v.43. – P. 2465–2478.

Smithies D.J., Butler P.H. Modelling the Distribution of Laser Light in Port-Wine Stains with the Monte Carlo Method. // Phys. Med. Biol. – 1995. – v. 40. – P. 701–733.

Song S., Kobayashi Y., Fujie M.G. Monte-Carlo simulation of light propagation considering characteristic of near-infrared LED and evaluation on tissue phantom. // Procedia CIRP. – 2013. – v. 5. – P. 25 – 30.

Star W.M. Diffusion theory of light transport. // Optical-thermal response of laser-irradiated tissue. / Ed. by Welch

A.J. and van Gemert M.J.C. – N.Y., 1995. – P. 131–206.

Sturesson C., Andersson-Engels S. Mathematical modelling of dynamic cooling and pre-heating, used to increase the depth of selective damage to blood vessels in laser treatment of port wine stains // Phys. Med. Biol. – 1996. – v. 41, N4. – P. 413–428.

Svaasand L.O., Norvang L.T., Fiskerstrand E.J., Stopps E.K.S., Berns M.W., Nelson J.S. Tissue parameters determining the visual appearance of normal skin and portwine stains. // Lasers in Med. Sci. – 1995. – v. 10. – P. 55–65.

The Science of Photomedicine. / J.D. Regan, J.A. Parrish (eds.), Plenum Press, New York. – 1982. – 201 p.

Tsai Sh.-Ru, Yin R., Huanga Y.-Y., et al. Low-level light therapy potentiatesNPe6-mediated photodynamic therapyin a human osteosarcoma cell line viaincreased ATP. // Photodiagn. Photodyn. Therapy. – 2015. – v.12. – P.123–130.

Tuchin V.V. Handbook of Optical Biomedical Diagnostics, SPIE Press, Bellingham. – 2002. – 1110 р.

Tuchin V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press, Bellingham, Washington. – 2007. – 988 р.

Valvano J.W. Tissue thermal properties and perfusion. // Optical-Thermal Response of Laser-Irradiated Tissue / Ed. by Welch A.J., van Gemert M.J.C. – N.Y., 1995. – P. 445–488.

Vinik A. I., Erbas T., Park T.S., et al. Dermal neovascular disfunction in type 2 diabetes. // Diabetes Care. – 2001. – v.24. – P.1468–1475.

Vo-Dinh T. Biomedical Photonics Handbook, CRC Press, Boca Raton. – 2003. – 1872 р.

Weber J.B., Pinheiro A.L., de Oliveira M.G.,et al. Laser therapy improves healing of bone defects submitted to autologous bone graft. // Photomed. Laser Surg. – 2006. – v.24. – P.38–44.

Weiss N., Oron U. Enhancement of muscle regeneration in the rat gastrocnemius muscle by low energy laser irradiation. // Anat. Embryol. (Berl.) – 1992. – v.186. – P.497–503.

Weiss R.A., McDaniel D.H., Geronemus R.G. Review of nonablative photorejuvenation: reversal of the aging effects of the sun and environmental damage using laser and light sources. // Semin. Cutan. Med. Surg. – 2003. – v.22. – P.93–116.

Weiss R.A., Weiss M.A., Geronemus R.G., McDaniel D.H. A novel non-thermal non-ablative full panel LED photomodulation device for reversal of photoaging: digital microscopic and clinical results in various skin types. // J. Drugs. Dermatol. – 2004. – v.3. – P.605–610.

Weiss R.A., McDaniel D.H., Geronemus R.G., et al. Clinical experience with lightemitting diode (LED) photomodulation. // Dermatol. Surg. – 2005. – v.31. – P.1199–1205.

Weiss R.A., McDaniel D.H., Geronemus R.G., Weiss

M.A. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. // Lasers. Surg. Med. – 2005. – v.36. – P.85–91.

Whelan H.T., Connelly J.F., Hodgson B.D., et al. NASA light-emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients. // J. Clin. Laser. Med. Surg. – 2002. – v.20. – P.319–324.

Whelan H.T., Buchman E.V., Dhokalia A., et al. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. // J. Clin. Laser. Med. Surg. – 2003. – v.21. – P.67–74.

Wong-Riley M.T.T., Bai X., Buchmann E., Whelan

H.T. Light-emitting diode treatment reverses the effect of TTX on cytochrome oxidase in neurons. // NeuroReport. – 2001. – v.12. – P.3033–3037.

Wong-Riley M.T., Liang H.L., Eells J.T., et al. Photobiomodulation directly benefits primary neurons functionally inactivatedby toxins: role of cytochrome c oxidase. // J. Biol. Chem. – 2005. – v.280. – P.4761—4771.

Wu Ch.-Sh., Hu S. Ch.-S., Lan Ch.-Ch., et al. Low- energy helium-neon laser therapy induces repigmentation and improves the abnormalities of cutaneousmicrocirculation in segmental-type vitiligo lesions. // J. Med. Sci. – 2008. – v.24,N4. – P.180–189.

Ying R., Liang H.L., Whelan H.T., et al. Pretreatment with near-infrared light via light-emitting diode provides added benefitagainst rotenone- and MPP+-induced neurotoxicity. // Brain Res. – 2008. – v.1243. – P.167—173.

Zhang L., Xing D., Zhu D., Chen Q. Low-power laser irradiation inhibiting Abeta25-35-induced PC12 cell apoptosis via PKCactivation. // Cell Physiol. Biochem. –2008.– v.22. – P.215—222.

Zhang H., Wu S., Xing D. Inhibition of Abeta(25—35)-inducedcell apoptosis by low-power-laser- irradiation (LPLI) throughpromoting Akt-dependent YAP cytoplasmic translocation. // CellSignal. – 2012. – v.24. – P.224–232.

Zipfel W.R., Williams R.M, Christie R., et al. Live tissue intrinsic emission microscopy using multiphoton-ex- cited native fluorescence and second harmonic generation. // Proc. NASU.- 2003.– 2003. – v.100,N12. – P.7075–7080.

Published
2017-05-05
How to Cite
Кизилова, Н. Н., & Коробов, А. М. (2017). Mechanisms of influence of low-intensity optical radiation on microcirculation system (review). Photobiology and Photomedicine, 13(1, 2), 75-95. Retrieved from https://periodicals.karazin.ua/photomedicine/article/view/8538
Section
Photobiology and experimental photomedicine

Most read articles by the same author(s)