Mathematical model of primary mechanism of low-intensity laser radiation biological action

  • Сергей Владимирович Москвин
Keywords: Low level laser radiation, primary mechanism of biological action, a mathematical model.

Abstract

A mathematical model of biological action of low-intensity laser radiation (LILR) mechanism which expounding our concept proposed in 2008 on thermodynamic initiating of Ca2+- dependent processes of LILR primary biological action is described. The hypothesis on two independent mechanisms for Ca2+ release from intracellular stores (specific, variable release time constant, and non-specific) with a time constant of 100 sec was approved. Mitochondria involvement in the development of secondary processes of LILR effects was proved. The further model development will allow to calculate the optimum scenarios for LILR effects on biological objects from the point of achieving the desired effect of exposure.

Downloads

Download data is not yet available.

References

Белинцев Б.Н. Физические основы биологического формообразования.– М.: Наука, 1991.– 253 с.

Бродский В.Я. Ритм синтеза белка / В.Я.Бродский, Н.В.Нечаева Н.В.– М.: Наука, 1988.– 239 с.

Леднев В.В. Биоэффекты слабых комбинированных, постоянных и переменных полей // Биофизика.– 1996.– Т.41, вып.1.– С.224-232.

Москвин С.В. Системный анализ эффективности управления биологическими системами низкоэнергетическим лазерным излучением: Автореф. дисс. … докт. биол. наук.– Тула, 2008.– 38 с.

Холмухамедов Э.Л. Роль митохондрий в обеспечении нормальной жизнедеятельности и выживания клеток млекопитающих: Автореф. дисс. … докт. биол. наук.– Пущино, 2008.– 35 с.

Эйген М. Гиперцикл. Принципы самоорганизации молекул / М.Эйген, П.Шустер.– М.: Мир, 1982.– 272 с.

Alexandratou E. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy / E.Alexandratou, D.Yova, P.Handris et al. // Photochemical & Photobiological Sciences.– 2002.- Vol.1, №8.- P.547-552.

Dupont G. Latency correlates with period in a model for signal-induced Ca2+ oscillations based on Ca2+-induced Ca2+ release / G.Dupont, M.J.Berridge, A.Goldbeter // Cell Regul.– 1990.- Vol.1.- P.853-861.

Dupont G. Oscillations and waves of citosolic calsium: insights from theoretical models / G.Dupont, A.Goldbeter // BioEssays.– 1992.- Vol.14.- P.485-493.

Dupont G. Theoretical insights into the origin of signal-induced calcium oscillations / G.Dupont, A.Goldbeter // Cell to cell signalling: From experiments to theoretical models.– London: Academic Press, 1989.– P.461-474.

Dupont G. What can we learn from the irregularity of Ca2+ oscillations? / G.Dupont, L.Combettes // Chaos.– 2009.- Vol.19, №3.- Art. 037112.

Friedmann H. Photobiostimulation by light-induced cytosolic calcium oscillations / H.Friedmann, R.Lubart // Laser Therapy.– 1996.- Vol.8, №2.- P.137-141.

Haberichter T. Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations / T.Haberichter, M.Marhl, R.Heinrich // Biophys. Chem.– 2001.- Vol.90, №1.- P.17-30.

Karu T.I. Photobiology of low-power laser therapy.– London, Paris, New-York: Harwood Acad. Publishers, 1989.– 187 p.

Karu T. Ten lectures on basic science of laser phototherapy.– Grängeberg, Sweden: Prima Books AB, 2007.– 414 p.

Lednev W. Possible mechanisms for the influence of weak magnetic fields on biological systems // Bioelectromagnetics.– 1991.- №12.- P.71-76.

Skupin A. How does intracellular Ca2+ oscillate: by chance or by the clock? / A.Skupin, H.Kettenmann, U.Winkler et al. // Biophysical Journal.– 2008.- Vol.94.- P.2404–2411.

Published
2015-10-28
How to Cite
Москвин, С. В. (2015). Mathematical model of primary mechanism of low-intensity laser radiation biological action. Photobiology and Photomedicine, 10(1, 2), 134-140. Retrieved from https://periodicals.karazin.ua/photomedicine/article/view/4219
Section
Photobiology and experimental photomedicine