Lasers in research and therapy: discoveries throughout the years

  • Anu Makela
Keywords: Low-level laser radiation, research, therapy, neurololgical diseases, review.

Abstract

In low-level laser therapy research there has been a clear division of physicists studying the laser itself and some specific cellular function in vitro, photobiologists studying cellular and molecular effects or medical doctors studying clinical effects. Effects of laser light have been under dispute ranging from ineffective to dangerous, cytotoxic, mutagenic, carcinogenic and proliferative effects. For years medical field based their reserve on lack of studies, poor studies, lack of evidence or no results. This has largely been due to the fact that quite a number of studies had been carried out in clinics with minimal funding, rendering double blind studies near impossible.

With the development of better and cheaper equipment cellular effects of laser and light became a popular topic of research. Clinical results gave encouraging reasons for further studies at the cellular and molecular level. This paper attempts to give a chronological review of notable studies in the use of low level lasers and light in the treatment of numerous medical conditions, focusing on the developing use of low level laser in the treatment of neurological diseases.

Downloads

Download data is not yet available.

References

Mester E., Szende B., Tota J.G. Effect of laser on hair Growth of mice (in Hungarian). Kiserl Orvostud 19. 628-631. 1967.

Goldman L., Blaney D.J., Kindel D.J., Franke E.K: Effect of the laser beam on the skin. J Invest Dermatol; 40:121– 122. 1963.

Goldman L., Blaney D.J., Kindel D.J., Jr. Richfield D., Franke E.K. Pathology of the effect of the laser beam on the skin. Nature. Mar 2;197:912–914. 1963.

Mcguff P.E, Bushnell D., Soroff H.S., Deterling R.A., Jr. Studies of the surgical applications of laser (light amplification by stimulated emission of radiation). Surg Forum.; 14:143–145, 1963.

Mester A., Mester E. Open wound healing—bedsores, ulcuscruris, burns—with systemic effects of LLLT. In Lasers in medicine and dentistry: Basic science and up-to-date clinical application of low-energy-level laser therapy-LLLT (Edited by Z. Simunovic), pp. 227–244. Vitagraf, Rijeka. 2000.

Abergel R.P., Meeker C.A., Lam T.S., Dwyer R.M., Lesavoy M.A., Uitto J. Control of connective tissue metabolism by lasers: recent developments and future prospects, J. Am. Acad. Dermatol,- 11:1142–1150. 1984.

Ohta A., P. Abergel, and J. Uitto. Laser modulation of human immune system: inhibition of lymphocyte proliferation by a gallium-arsenide laser at low energy. Lasers Surg. Med. 7;199–201. 1987.

Gamaleya N.F., Shishko E.D., Yanish G.V. New data about mammalian cells photosensitivity and laser biostimulation. Dokl. Akad. Nauk SSSR (Moscow) 273:1224–227. 1983.

Mäkelä R., Mäkelä A. Sähkölaser akupunktio verrattuna neula-akupunktioon autoimmuunikilpirauhastulehdusten hoidossa. Akta eletrofysiologica 3, 12-17, 1985.

Makela A., Makela R. Theoretical aspects of Electromagnetic and Biochemical Effects of Low Intensity Laser Stimulation on Living Cells. In Laser in der Medizin / Laser in medicine, Ed. W.Waidelich, pp.419-424. Springer-Verlag Berlin, Heidelberg. 1992.

Klebanov G.I., Teselkin Y.O., Babenkova I.V., Bashkujeva T.Y., Chichuk T.V., Vladimirov Y.A. "Low-power laser irradiation induces leukocyte priming", Gen Physiol Biophys;17(4):365-76. Dec 1998.

Fedoseyeva G.E., Smolyaninova N.K., Karu T.I., Zelenin A.V. Human lymphocyte chromatin changes following irradiation with a He-Ne laser. Lasers Life Sci. 2:3197–205. 1988.

Meyers A.D., J.Joyce, and J.J. Cohan. Effects of low-watt He-Ne laser radiation on human lymphocyte cultures. Lasers Med. Surg 6;540–542. 1987.

Inoue K., J. Nishioka, and S. Hukuda. Altered lymphocyte proliferation by low dosage laser irradiation. Clin. Exp. Rheumatol. 7;521–523. 1989.

Furchgott R.F., Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels. 28(1-3):52-61. 1991.

Mishalkin E., editor “Application of direct laser irradiation in experimental and clinical heart surgery (in Russian)”, Novosibirsk: Nauka,1981.

Rochkind S., Nissan M. Lubart R. A single transcutaneous light irradiaiton to injured peripheral nerve: comparative study with five different wavelengths. Lasers in Medical Science. 4;259-263. 1989.

Passarella S, Ostuni A, Atlante A, Quagliariello E. Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser. Biochem Biophys Res Commun. Oct 31;156(2):978-86. 1988.

Gamaleya, N.F., Fedorchuk A.G., Prokopenko I.V. Laser immunomodulation: Cellular pathways of signal transduction involvement. Photobiol. Photomed. (Ukraine) 2:144–49. 1999.

Stranadko E.F., Klebanov G.I., Chichuk T.V. Interaction of photosensitizers with membranes of liposomes and of human erythrocytes. “Abstract book BIOS Europe ‘96” Austria, Vienna, p. 30. 1996.

Kaplan M.A. Evaluation of the effects of influence of low power infrared laser irradiation on human brain using electroencephalography. Abstract book “Lasers and air ions in medicine”, Kaluga, Obninsk, p. 30 (in Russian). 1997.

Korochkin I.M., Babenko E.V. mechanisms of therapeutic effectiveness of helium-neone laser. Moscow. Medicina. p. 238. 1990.

Ohshiro T, and Maeda T. Application of 830 nm diode laser LLLT as successful adjunctive therapy of hypertrophic scars and keloids. Laser Therapy, 4:155-168. 1992.

Karu T.I., Smolyaninova N.K., Zelenin A.V. Long-term and short-term responses of human lymphocytes to He-Ne laser radiation. Lasers Life Sci. 4;167–178. 1991.

Porozov Yu., Brill G., Kiritchuk V. Influence of He-Ne laser irradiation on frogs heart 01/1995; In proceeding of: International Congress – Laser Medizin “Laser in Medicine and Surgery”, Volume: Vol. 11, № 2, 108. 1995.

Tappeiner H. von; A. Jodlbauer. Uber die Wirkung der photodynamischen (fluorescierenden) Stoffe auf Protozoen und Enzyme. Dtsch. Arch. Klin. Med. 80;427–487. 1904.

Tappeiner H. von; H. Jesionek. Therapeutische Versuche mit fluoreszierenden Stoffen. Munch. Med. Wschr. 50;2042–4. 1903.

Figg H.J., Weiland G.S., Manganiello L.J. Cancer detection and therapy, affinity of neoplastic, embryonic, and traumatized tissues for porphyrins and metalloporphyrins. Proc Soc Exp Biol Med 68, 640-641. 1948.

Dougherty T.J., Kaufman J.E., Goldfarb A., Weishaupt K.R., Boyle D., Mittleman A. Photoradiation therapy for the treatment of malignant tumors, Cancer Res., vol. 38, no. 8, pp. 2628-2635. 1978.

Mironov A.F., Nizhnik A.N., Nockel A.Yu. Hematoporphyrin derivatives: an oligomeric composition study,. Photochem. Photobiol. B Biology, 4, 297-306 1990.

Klebanov G., Poltanov E., Chichuk T., Osipov A., Vladimirov Yu. Changes in superoxide dismutase activity and peroxynitrite content in rat peritoneal macrophages exposed to he-ne laser radiation. Biochemistry (Mosc) 70 (12);1335-40, 2005.

Klebanov G.I., Shuraeva N.Yu, Chichuk T.V., Osipov A.N., Vladimirov YuA. A comparison of the effects of laser and light-emitting diodes on superoxide dismutase activity and nitric oxide production in rat wound fluid. Biofizika. 51;1123–135. 2006.

Rochkind S., Barr-Nea L., Volger I. Spinal cord response to laser treatment of injured peripheral nerve. Spine. 15;6-10. 1990.

Rochkind S., Ouaknine G. New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol. Res. 4;2-11, 1992.

Ueda Y., Shimizu N. Pulse irradiation of low-power laser stimulates bone nodule formation. J Oral Sci. Mar;43(1):55-60. 2001.

Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of Photochemistry and Photobiology B: Biology, Volume 49, Issue 1, March, Pages 1–17. 1999.

Karu T, Pyatibrat L., Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. Journal of Photochemistry and Photobiology B: Biology, Volume 27, Issue 3, March, Pages 219–223. 1995.

Torinuki W, Miura T, Seiji M. Lysosome destruction and lipoperoxide formation due to active oxygen generated from haematoporphyrin and UV irradiation. Br J Dermatol. Jan;102(1):17–27. 1980.

Tatsuta M., Yamamoto R., Yamamura H., Iishi H., Noguchi S., Ichii M., Okuda S. Photodynamic Effects of Exposure to Hematoporphyrin Derivatives and Dye-Laser Radiation on Human Gastric Adenocarcinoma Cells. JNCI J Natl Cancer Inst 73(1): 59-67. 1984.

Manteifel V.M., Andreichuk T.N., Karu T.I., Chelidze P.V., Zelenin A.V. Activation of transcription in lymphocytes under the action of Ne-He laser irradiation. Mol. Biol. (Moscow). 24:1067–1075. 1990.

Pastore D., Greco M., Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int. J. Radiat. Biol.;76:863–870. 2000.

Artyukhov V.G., Basharina O.V., Pantak A.A., Sveklo L.S. Effect of helium-neon laser on activity and optical properties of catalase. Bull Exp Biol Med. Jun;129(6):537-40. 2000.

Shefer G., Oron U., Irintchev A., Wernig A., Halevy O. Skeletal muscle cell activation by low-energy laser irradiation: A role for the MAPK/ERK pathway. Journal of Cellular Physiology. Volume 187, Issue 1, pages 73–80, April 2001.

Oron U., Yaakobi T., Oron A., Hayam G., Gepstein L., Wolf T., Rubin O., Ben Haim S.A. Attenuation of the formation of scar tissue in rats and dogs post myocardial infarction by low energy laser irradiation. Lasers in Surgery and Medicine, 28, 204-211. 2001.

Oron U., Yaakobi T., Oron A., Mordechovitz D., Shofti R., Hayam G., Dror U., Gepstein L., Wolf T., Haudenschild C., Ben Haim S.A. Low energy laser irradiation reduces formation of scar tissue following myocardial infarction in dogs. Circulation, 103, 296-301. 2001.

Samoilova K.A., Dutkevitch I.G., Obolenskaya K.D.,. Gamova I.M, Snopov S.A., Artsishevskaya R.A., Marchenko A.V., Ivaneev M.D., Parshin E.V. Trigger mechanisms of the therapeutic effect of autologous blood modified by coherent and incoherent visible light. Vestn. Khir. im. I.I. Grek. 146;287–93. 1991.

Samoilova K.A., Obolenskaya K.D., Vologdina A.V., Snopov S.A., Shevchenko E.V. Single skin exposure to visible polarized light induces rapid modification of entire circulating blood. 1. Improvement of rheologic and immune parameters. Proc. SPIE. 3569;90–103. 1998.

Obolenskaya K.D., Samoilova K.A. Comparative study of effects of polarized and non-polarized light on human blood in vivo and in vitro. I. Phagocytosis of monocytes and granulocytes. Laser Technol. 12;2. 2002.

Lubart R., Friedmann H., Grossman N., Cohen N., Breitbart H. The role of reactive oxygen species in photobiostimulation. Trends in Photochemistry and Photobiology. 4;277-283. 1997.

Lubart R., Friedmann H., Cohen N., Brietbart H. Effect of HeNe laser on calcium signals in sperm cells, Proc. SPIE 3569, Effects of Low-Power Light on Biological Systems IV, 45 December 29, 1998.

Friedmann H., Lubart R., Laulicht I., Rochkind S. Toward an explanation of laser-induced stimulation and damage of cell cultures. Proc. SPIE Vol. 1427, p. 357-362. 06/1991.

Funk J.O., Kruse A., Kirchner H. Cytokine production after helium-neon laser irradiation in cultures of human peripheral blood mononuclear cells. J. Photochem. Photobiol. 16:347–355. 1992.

Schwartz F., Adamek M., Brodie C., Shainberg A. Effect of low-energy laser irradiation on cytokine secretion from skeletal muscle cells: involvement of calcium in the process, Proc. SPIE 3198, Effects of Low-Power Light on Biological Systems, 48, December 22, 1997.

Tsuyoshi lnoue, Daisuke Irikura, Nobuo Okazaki, Shigehiro Kinugasa, Hiroyoshi Matsumura, Nobuko Uodome, Masaki Yamamoto, Takashi Kumasaka, Masashi Miyano, Yasushi Kai and Yoshihiro Urade. Mechanism of metal activation of human hematopoietic prostaglandin D synthase. Nature structural biology Volume 1. 2003.

Gasparyan L., Brill G., Makela A. Influence of laser radiation on migration of stem cells. EMLA proceedings, Moscow, 2004.

Trimmer P.A., et al. Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy. Mol. Neurodegener. 4:26. 2009.

Makela A., Kaplan M. Histological and morphological effects and mechanisms of low level laser influence. Lasers in Medical science. 01/2006

Makela A. Use of Laser and Light on the Regulation of Growth factors and Inflammatory Mediators Involved in Oligodendrocyte Maturation and Function and Myelin Repair. Photodiagnosis and Photodynamic Therapy 08/2012.

Lynch J.A., George A.M., Eisenhauer P.B., Conn K., Gao W., Carreras I., Wells J.M., McKee A., Ullman M.D., Fine R.E. J. Insulin degrading enzyme is localized predominantly at the cell surface of polarized and unpolarized human cerebrovascular endothelial cell cultures. Neurosci. Res. 870. 2006.

Shen Y., Joachimiak A., Rich Rosner M., Tang W. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism Nature. 443, 870-874. 2006.

Kleifeld O., Kotra L., Gervasi D., Brown S., Bernardo M., Fridman R., Mobashery S., Sagi I. X-ray Absorption Studies of Human Matrix Metalloproteinase-2 (MMP-2) Bound to a Highly Selective Mechanism-based Inhibitor The Journal of Biological Chemistry. Vol. 276, No. 20: 17125–17131. 2001.

Auld D. Zinc catalysis in metalloproteases: Metal Sites in Proteins and Models. Structure and Bonding Volume 89, pp 29-50. 1997.

Hortnagle H., Winkler H., Lochs H. Immunological Studies On A Membrane Protein (Chromomembrin B) Of Catecholamine-Storing Vesicles.J. Neurochem. 20, 977-985. 1973.

Duong L.T., Fleming, P.J. The asymmetric orientation of cytochrome b561 in bovine chromaffin granule membranes . Arch. Biochem. Biophys. 228;332-341. 1984.

Pruss R.M., Shepard E.A. Cytochrome b561 can be detected in many neuroendocrine tissues using a specific monoclonal antibody. Neuroscience. 22; 149-157. 1987.

Weiler R., Cidon S., Gershon M. D., Tamir H., Hogue-Angeletti R., Winkler H. Adrenal chromaffin granules and secretory granules from thyroid parafollicular cells have several common antigens. FEBS Lett. 257;457-459. 1989.

Vescovi A.L., Reynolds B.A., Fraser D.D., et al. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron. 11:951–966. 1993.

Doetsch F., Petreanu L., Caille I., et al. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 36:1021–1034. 2002.

Hou J., Zhang H., Yuan X., Li J., Wei Y., Hu S. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differentiation. Lasers Surg. Med. 40; 726–733. 2008.

Safavi S.M, Kazemi B., Esmaeli M., Fallah A., Modarresi A., Mir M. Effect of low-level he-ne laser irradiation on the gene expression of IL-1, TNF alpha, TGF beta, FGF and PDGF in rat’s gingiva. Lasers Med Sci. 23(3):331-335. 2008.

Published
2015-10-28
How to Cite
Makela, A. (2015). Lasers in research and therapy: discoveries throughout the years. Photobiology and Photomedicine, 10(1, 2), 46-54. Retrieved from https://periodicals.karazin.ua/photomedicine/article/view/4207
Section
Clinical photomedicine